scholarly journals Price-Based Resource Allocation in Wireless Power Transfer-Enabled Massive MIMO Networks

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3298 ◽  
Author(s):  
Zhengqiang Wang ◽  
Kunhao Huang ◽  
Xiaona Yang ◽  
Xiaoyu Wan ◽  
Zifu Fan ◽  
...  

This paper considers the price-based resource allocation problem for wireless power transfer (WPT)-enabled massive multiple-input multiple-output (MIMO) networks. The power beacon (PB) can transmit energy to the sensor nodes (SNs) by pricing their harvested energy. Then, the SNs transmit their data to the base station (BS) with large scale antennas by the harvesting energy. The interaction between PB and SNs is modeled as a Stackelberg game. The revenue maximization problem of the PB is transformed into the non-convex optimization problem of the transmit power and the harvesting time of the PB by backward induction. Based on the equivalent convex optimization problem, an optimal resource allocation algorithm is proposed to find the optimal price, energy harvesting time, and power allocation for the PB to maximize its revenue. Finally, simulation results show the effectiveness of the proposed algorithm.

Telecom ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 96-113
Author(s):  
Pavlos Doanis ◽  
Achilles Boursianis ◽  
Julien Huillery ◽  
Arnaud Bréard ◽  
Yvan Duroc ◽  
...  

The technique of transmitting multi-tone signals in a radiative Wireless Power Transfer (WPT) system can significantly increase its end-to-end power efficiency. The optimization problem in this system is to tune the transmission according to the receiver rectenna’s nonlinear behavior and the Channel State Information (CSI). This is a non-convex problem that has been previously addressed by Sequential Convex Programming (SCP) algorithms. Nonetheless, SCP algorithms do not always attain globally optimal solutions. To this end, in this paper, we evaluate a set of Evolutionary Algorithms (EAs) with several characteristics. The performance of the optimized multi-tone transmission signals in a WPT system is assessed by means of numerical simulations, utilizing a simplified Single Input Single Output (SISO) model. From the model evaluation, we can deduce that EAs can be successfully applied to the waveform design optimization problem. Moreover, from the presented results, we can derive that EAs can obtain the optimal solutions in the tested cases.


2018 ◽  
Vol 67 (7) ◽  
pp. 5841-5855 ◽  
Author(s):  
Mahnaz Sinaie ◽  
Pin-Hsun Lin ◽  
Alessio Zappone ◽  
Paeiz Azmi ◽  
Eduard A. Jorswieck

2021 ◽  
Vol 10 (2) ◽  
pp. 785-792
Author(s):  
Anh-Tu Le ◽  
Minh-Sang Van Nguyen ◽  
Dinh-Thuan Do

Power domain based multiple access scheme is introduced in this paper, namely Non-orthogonal multiple-access (NOMA). We deploy a wireless network using NOMA together with a wireless power transfer (WPT) scheme for dedicated user over Nakagami-$m$ fading channel. When combined, these promising techniques (NOMA and WPT) improve the system performance in term of ergodic performance at reasonable coefficient of harvested power. However, fixed power allocation factors for each NOMA user can be adjusted at the base station and it further provide performance improvement. We design a new signal frame to deploy a NOMA scheme in WPT which adopts a linear energy harvesting model. The ergodic capacity in such a NOMA network and power allocation factors can be updated frequently in order to achieve a fair distribution among NOMA users. The exact expressions of ergodic capacity for each user is derived. The simulation results show that an agreement between analytic performance and Monte-Carlo simulation can be achieved. 


Information ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 335
Author(s):  
Yuan Ren ◽  
Xuewei Zhang ◽  
Meruyert Makhanbet

In this work, we jointly investigate the issues of node scheduling and transceiver design in a sensor network with multiple clusters, which is endowed with simultaneous wireless information and power transfer. In each cluster of the observed network, S out of N nodes are picked, each of which is capable of performing information transmission (IT) via uplink communications. As for the remaining idle nodes, they can harvest energy from radio-frequency signals around their ambient wireless environments. Aiming to boost the intra-cluster performance, we advocate an interference alignment enabled opportunistic communication (IAOC) scheme. This scheme can yield better tradeoffs between IT and wireless power transfer (WPT). With the aid of IAOC scheme, the signal projected onto the direction of the receive combining vector is adopted as the accurate measurement of effective signal strength, and then the high-efficiency scheduling metric for each node can be accordingly obtained. Additionally, an algorithm, based on alternative optimization and dedicated for transceiver design, is also put forward, which is able to promote the achievable sum rate performance as well as the total harvested power. Our simulation results verify the effectiveness of the designed IAOC scheme in terms of improving the performance of IT and WPT in multi-cluster scenarios.


2018 ◽  
Vol E101.B (11) ◽  
pp. 2331-2339
Author(s):  
Jia-Cheng ZHU ◽  
Dong-Hua CHEN ◽  
Yu-Cheng HE ◽  
Lin ZHOU ◽  
Jian-Jun MU

Sign in / Sign up

Export Citation Format

Share Document