scholarly journals Three-Factor Fast Authentication Scheme with Time Bound and User Anonymity for Multi-Server E-Health Systems in 5G-Based Wireless Sensor Networks

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2511 ◽  
Author(s):  
Alice May-Kuen Wong ◽  
Chien-Lung Hsu ◽  
Tuan-Vinh Le ◽  
Mei-Chen Hsieh ◽  
Tzu-Wei Lin

The fifth generation (5G) mobile network delivers high peak data rates with ultra-low latency and massive network capacity. Wireless sensor network (WSN) in Internet of Thing (IoT) architecture is of prominent use in 5G-enabled applications. The electronic healthcare (e-health) system has gained a lot of research attention since it allows e-health users to store and share data in a convenient way. By the support of 5G technology, healthcare data produced by sensor nodes are transited in the e-health system with high efficiency and reliability. It helps in reducing the treatment cost, providing efficient services, better analysis reports, and faster access to treatment. However, security and privacy issues become big concerns when the number of sensors and mobile devices is increasing. Moreover, existing single-server architecture requires to store a massive number of identities and passwords, which causes a significant database cost. In this paper, we propose a three-factor fast authentication scheme with time bound and user anonymity for multi-server e-health systems in 5G-based wireless sensor networks. In our work, the three-factor authentication scheme integrating biometrics, password, and smart card ensures a high-security sensor-enabled environment for communicating parties. User anonymity is preserved during communication process. Besides, time bound authentication can be applied to various healthcare scenarios to enhance security. The proposed protocol includes fast authentication, which can provide a fast communication for participating parties. Our protocol is also designed with multi-server architecture to simplify network load and significantly save database cost. Furthermore, security proof and performance analysis results show that our proposed protocol can resist various attacks and bear a rational communication cost.

Author(s):  
Jihyeon Ryu ◽  
Hakjun Lee ◽  
Hyoungshick Kim ◽  
Dongho Won

Wireless sensor networks are widely used in many applications such as environmental monitoring, health care, smart grid and surveillance. Many security protocols have been proposed and intensively studied due to the inherent nature of wireless networks. In particular, Wu et al. proposed a promising authentication scheme which is sufficiently robust against various attacks. However, according to our analysis, Wu et al.'s scheme has two serious security weaknesses against malicious outsiders. First, their scheme can lead to user impersonation attacks. Second, user anonymity is not preserved in their scheme. In this paper, we present these vulnerabilities of Wu et al.'s scheme in detail. We also propose a new scheme by fixing such vulnerabilities and improving the performance of the protocol.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4481 ◽  
Author(s):  
Jihyeon Ryu ◽  
Hakjun Lee ◽  
Hyoungshick Kim ◽  
Dongho Won

Wireless sensor networks are widely used in many applications such as environmental monitoring, health care, smart grid and surveillance. Many security protocols have been proposed and intensively studied due to the inherent nature of wireless networks. In particular, Wu et al. proposed a promising authentication scheme which is sufficiently robust against various attacks. However, according to our analysis, Wu et al.’s scheme has two serious security weaknesses against malicious outsiders. First, their scheme can lead to user impersonation attacks. Second, user anonymity is not preserved in their scheme. In this paper, we present these vulnerabilities of Wu et al.’s scheme in detail. We also propose a new scheme to complement their weaknesses. We improve and speed up the vulnerability of the Wu et al. scheme. Security analysis is analyzed by Proverif and informal analysis is performed for various attacks.


Sign in / Sign up

Export Citation Format

Share Document