scholarly journals Training Data Extraction and Object Detection in Surveillance Scenario

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2689 ◽  
Author(s):  
Artur Wilkowski ◽  
Maciej Stefańczyk ◽  
Włodzimierz Kasprzak

Police and various security services use video analysis for securing public space, mass events, and when investigating criminal activity. Due to a huge amount of data supplied to surveillance systems, some automatic data processing is a necessity. In one typical scenario, an operator marks an object in an image frame and searches for all occurrences of the object in other frames or even image sequences. This problem is hard in general. Algorithms supporting this scenario must reconcile several seemingly contradicting factors: training and detection speed, detection reliability, and learning from small data sets. In the system proposed here, we use a two-stage detector. The first region proposal stage is based on a Cascade Classifier while the second classification stage is based either on a Support Vector Machines (SVMs) or Convolutional Neural Networks (CNNs). The proposed configuration ensures both speed and detection reliability. In addition to this, an object tracking and background-foreground separation algorithm is used, supported by the GrabCut algorithm and a sample synthesis procedure, in order to collect rich training data for the detector. Experiments show that the system is effective, useful, and applicable to practical surveillance tasks.

Author(s):  
Robin C. Gilbert ◽  
Shivakumar Raman ◽  
Theodore B. Trafalis ◽  
Suleiman M. Obeidat ◽  
Juan A. Aguirre-Cruz

Nonlinear forms such as the cone, sphere, cylinder, and torus present significant problems in representation and verification. In this paper we examine linear and nonlinear forms using a heavily modified support vector machine (SVM) technique. The SVM approach applied to regression problems is used to derive quadratic programming problems that allow for generalized symbolic solutions to nonlinear regression. We have tested our approach to several geometries and achieved excellent results even with small data sets, making this method robust and efficient. More importantly, we identify process or inspection tendencies that could help in better designing the processes. Adaptive feature verification can be achieved through effective identification of the manufacturing pattern.


Author(s):  
Frank Padberg

The author uses neural networks to estimate how many defects are hidden in a software document. Input for the models are metrics that get collected when effecting a standard quality assurance technique on the document, a software inspection. For inspections, the empirical data sets typically are small. The author identifies two key ingredients for a successful application of neural networks to small data sets: Adapting the size, complexity, and input dimension of the networks to the amount of information available for training; and using Bayesian techniques instead of cross-validation for determining model parameters and selecting the final model. For inspections, the machine learning approach is highly successful and outperforms the previously existing defect estimation methods in software engineering by a factor of 4 in accuracy on the standard benchmark. The author’s approach is well applicable in other contexts that are subject to small training data sets.


Author(s):  
Che-Jung Chang ◽  
Guiping Li ◽  
Shao-Qing Zhang ◽  
Kun-Peng Yu

Effective determination of trends in sulfur dioxide emissions facilitates national efforts to draft an appropriate policy that aims to lower sulfur dioxide emissions, which is essential for reducing atmospheric pollution. However, to reflect the current situation, a favorable emission reduction policy should be based on updated information. Various forecasting methods have been developed, but their applications are often limited by insufficient data. Grey system theory is one potential approach for analyzing small data sets. In this study, an improved modeling procedure based on the grey system theory and the mega-trend-diffusion technique is proposed to forecast sulfur dioxide emissions in China. Compared with the results obtained by the support vector regression and the radial basis function network, the experimental results indicate that the proposed procedure can effectively handle forecasting problems involving small data sets. In addition, the forecast predicts a steady decline in China’s sulfur dioxide emissions. These findings can be used by the Chinese government to determine whether its current policy to reduce sulfur dioxide emissions is appropriate.


Author(s):  
Jianping Ju ◽  
Hong Zheng ◽  
Xiaohang Xu ◽  
Zhongyuan Guo ◽  
Zhaohui Zheng ◽  
...  

AbstractAlthough convolutional neural networks have achieved success in the field of image classification, there are still challenges in the field of agricultural product quality sorting such as machine vision-based jujube defects detection. The performance of jujube defect detection mainly depends on the feature extraction and the classifier used. Due to the diversity of the jujube materials and the variability of the testing environment, the traditional method of manually extracting the features often fails to meet the requirements of practical application. In this paper, a jujube sorting model in small data sets based on convolutional neural network and transfer learning is proposed to meet the actual demand of jujube defects detection. Firstly, the original images collected from the actual jujube sorting production line were pre-processed, and the data were augmented to establish a data set of five categories of jujube defects. The original CNN model is then improved by embedding the SE module and using the triplet loss function and the center loss function to replace the softmax loss function. Finally, the depth pre-training model on the ImageNet image data set was used to conduct training on the jujube defects data set, so that the parameters of the pre-training model could fit the parameter distribution of the jujube defects image, and the parameter distribution was transferred to the jujube defects data set to complete the transfer of the model and realize the detection and classification of the jujube defects. The classification results are visualized by heatmap through the analysis of classification accuracy and confusion matrix compared with the comparison models. The experimental results show that the SE-ResNet50-CL model optimizes the fine-grained classification problem of jujube defect recognition, and the test accuracy reaches 94.15%. The model has good stability and high recognition accuracy in complex environments.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 8-9
Author(s):  
Zahra Karimi ◽  
Brian Sullivan ◽  
Mohsen Jafarikia

Abstract Previous studies have shown that the accuracy of Genomic Estimated Breeding Value (GEBV) as a predictor of future performance is higher than the traditional Estimated Breeding Value (EBV). The purpose of this study was to estimate the potential advantage of selection on GEBV for litter size (LS) compared to selection on EBV in the Canadian swine dam line breeds. The study included 236 Landrace and 210 Yorkshire gilts born in 2017 which had their first farrowing after 2017. GEBV and EBV for LS were calculated with data that was available at the end of 2017 (GEBV2017 and EBV2017, respectively). De-regressed EBV for LS in July 2019 (dEBV2019) was used as an adjusted phenotype. The average dEBV2019 for the top 40% of sows based on GEBV2017 was compared to the average dEBV2019 for the top 40% of sows based on EBV2017. The standard error of the estimated difference for each breed was estimated by comparing the average dEBV2019 for repeated random samples of two sets of 40% of the gilts. In comparison to the top 40% ranked based on EBV2017, ranking based on GEBV2017 resulted in an extra 0.45 (±0.29) and 0.37 (±0.25) piglets born per litter in Landrace and Yorkshire replacement gilts, respectively. The estimated Type I errors of the GEBV2017 gain over EBV2017 were 6% and 7% in Landrace and Yorkshire, respectively. Considering selection of both replacement boars and replacement gilts using GEBV instead of EBV can translate into increased annual genetic gain of 0.3 extra piglets per litter, which would more than double the rate of gain observed from typical EBV based selection. The permutation test for validation used in this study appears effective with relatively small data sets and could be applied to other traits, other species and other prediction methods.


Author(s):  
Jungeui Hong ◽  
Elizabeth A. Cudney ◽  
Genichi Taguchi ◽  
Rajesh Jugulum ◽  
Kioumars Paryani ◽  
...  

The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis-Taguchi System and a neural network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The study uses the Wisconsin Breast Cancer study with nine attributes and one class.


Sign in / Sign up

Export Citation Format

Share Document