scholarly journals Dynamic Displacement Estimation for Long-Span Bridges Using Acceleration and Heuristically Enhanced Displacement Measurements of Real-Time Kinematic Global Navigation System

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5092
Author(s):  
Kiyoung Kim ◽  
Hoon Sohn

In this paper, we propose a dynamic displacement estimation method for large-scale civil infrastructures based on a two-stage Kalman filter and modified heuristic drift reduction method. When measuring displacement at large-scale infrastructures, a non-contact displacement sensor is placed on a limited number of spots such as foundations of the structures, and the sensor must have a very long measurement distance (typically longer than 100 m). RTK-GNSS, therefore, has been widely used in displacement measurement on civil infrastructures. However, RTK-GNSS has a low sampling frequency of 10–20 Hz and often suffers from its low stability due to the number of satellites and the surrounding environment. The proposed method combines data from an RTK-GNSS receiver and an accelerometer to estimate the dynamic displacement of the structure with higher precision and accuracy than those of RTK-GNSS and 100 Hz sampling frequency. In the proposed method, a heuristic drift reduction method estimates displacement with better accuracy employing a low-pass-filtered acceleration measurement by an accelerometer and a displacement measurement by an RTK-GNSS receiver. Then, the displacement estimated by the heuristic drift reduction method, the velocity measured by a single GNSS receiver, and the acceleration measured by the accelerometer are combined in a two-stage Kalman filter to estimate the dynamic displacement. The effectiveness of the proposed dynamic displacement estimation method was validated through three field application tests at Yeongjong Grand Bridge in Korea, San Francisco–Oakland Bay Bridge in California, and Qingfeng Bridge in China. In the field tests, the root-mean-square error of RTK-GNSS displacement measurement reduces by 55–78 percent after applying the proposed method.

2013 ◽  
Vol 558 ◽  
pp. 227-234
Author(s):  
Jong Woong Park ◽  
Sung Han Sim ◽  
Hyung Jo Jung ◽  
Billie F. Spencer

A displacement measurement provides useful information for structural health monitoring (SHM) as it is directly related to stiffness of the structure. Most existing methods of direct measurement such as the Laser Doppler Vibrometer (LDV) and the Liner Variable Differential Transformer (LVDT) are known to have accurate performance but have difficulties particularly in the use of large-scale civil structures as the methods rely on fixed reference points. Alternatively, indirect methods have been developed and widely used methods are Global Positioning System (GPS), vision-based displacement measurement system and displacement estimation from acceleration record. Among the indirect method, the use of accelerometer provides simple and economical in term of both hardware installation and operation. The major problem using acceleration based displacement estimation is low frequency drift caused by double integration. Recently, dynamic displacement estimation algorithm that addresses low-frequency drift problem has been developed. This study utilizes Wireless Smart Sensor (WSN) for estimating dynamic displacement from acceleration measurement in combination with the recently developed displacement estimation algorithm. Integrated into WSN that are low-cost, wireless, compatible with accelerometers, and capable of onboard computation, the displacement can be measured without limit of location on large-scale civil structures. Thus, this approach has the significant potential to impact many applications that require displacement measurements. With the displacement estimation algorithm embedded, the WSN performs in-network data processing to estimate displacements at each distributed sensor location wirelessly using only measured acceleration data. To experimentally validate the performance of displacement estimation using WSN for the use in structures with multiple-degree of freedom, the random vibration test is conducted on the three-story shear building model. The estimated displacement is compared with the reference displacements measured from the laser displacement sensor and the result shows good agreement.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Soojin Cho ◽  
Jong-Woong Park ◽  
Rajendra P. Palanisamy ◽  
Sung-Han Sim

Displacement responses of a bridge as a result of external loadings provide crucial information regarding structural integrity and current conditions. Due to the relative characteristic of displacement, the conventional measurement approach requires reference points to firmly install the transducers, while the points are often unavailable for bridges. In this paper, a displacement estimation approach using Kalman filter-based data fusion is proposed to provide a practical means for displacement measurement. The proposed method enables accurate displacement estimation by optimally utilizing acceleration and strain in combination that have high availability and are free from reference points for sensor installation. The Kalman filter is formulated using a state-space model representing the double integration of acceleration and model-based strain-displacement relationship. The validation of the proposed method is conducted successfully by a numerical simulation and a field experiment, which shows the efficacy and accuracy of the proposed approach in bridge displacement measurement.


2018 ◽  
Vol 25 (8) ◽  
pp. e2209 ◽  
Author(s):  
Fernando Gomez ◽  
Jong-Woong Park ◽  
Billie F. Spencer

Sign in / Sign up

Export Citation Format

Share Document