scholarly journals Comfortable and Convenient Turning Skill Assessment for Alpine Skiers Using IMU and Plantar Pressure Distribution Sensors

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 834
Author(s):  
Seiji Matsumura ◽  
Ken Ohta ◽  
Shin-ichiroh Yamamoto ◽  
Yasuharu Koike ◽  
Toshitaka Kimura

Improving ski-turn skills is of interest to both competitive and recreational skiers, but it is not easy to improve on one’s own. Although studies have reported various methods of ski-turn skill evaluation, a simple method that can be used by oneself has not yet been established. In this study, we have proposed a comfortable method to assess ski-turn skills; this method enables skiers to easily understand the relationship between body control and ski motion. One expert skier and four intermediate skiers participated in this study. Small inertial measurement units (IMUs) and mobile plantar pressure distribution sensors were used to capture data while skiing, and three ski-turn features—ski motion, waist rotation, and how load is applied to the skis—as well as their symmetry, were assessed. The results showed that the motions of skiing and the waist in the expert skier were significantly larger than those in intermediate skiers. Additionally, we found that the expert skier only slightly used the heel to apply a load to the skis (heel load ratio: approximately 60%) and made more symmetrical turns than the intermediate skiers did. This study will provide a method for recreational skiers, in particular, to conveniently and quantitatively evaluate their ski-turn skills by themselves.

2009 ◽  
Vol 44 (4) ◽  
pp. 356-362 ◽  
Author(s):  
Kim D. Barber Foss ◽  
Kevin R. Ford ◽  
Gregory D. Myer ◽  
Timothy E. Hewett

Abstract The relationship between generalized joint laxity and plantar pressure distribution of the foot and the potential implications for lower extremity injury have not been studied.Context: To determine the relationship between generalized joint laxity and dynamic plantar pressure distribution. We hypothesized that individuals with greater generalized joint laxity, or hypermobility, would have greater dynamic medial midfoot pressure and loading during walking than nonhypermobile individuals.Objective: Case control.Design: Institutional biomechanics laboratory.Setting: Participants included 112 female soccer players between 11 and 21 years of age.Patients or Other Participants: Each participant was tested for generalized joint laxity using the Beighton and Horan Joint Mobility Index (BHJMI; range, 0–9) and was categorized as having either high (BHJMI score ≥4) or low (BHJMI score <4) generalized joint laxity. Peak pressure and maximum force were calculated from a dynamic, barefoot plantar pressure distribution system.Main Outcome Measure(s): Peak pressure and maximum force were greater in the 27 participants categorized as having high generalized joint laxity than in the 85 participants categorized as having low generalized joint laxity. The midfoot region exhibited greater loading in participants with high generalized joint laxity than in the other participants. We found an effect of BHJMI classification in the medial midfoot; peak pressure in the dominant (F1,109  =  11.262, P  =  .001) and nondominant (F1,109  =  14.32, P < .001) sides and maximum force in the dominant (F1,109  =  7.88, P  =  .006) and nondominant (F1,109  =  9.18, P  =  .003) sides were greater in the high generalized joint laxity group than in the low generalized joint laxity group.Results: Athletes classified as having high generalized joint laxity demonstrated increased midfoot loading. Delineation of risk factors for medial collapse of the foot, which include hypermobility in athletes, may help clinicians evaluate and prevent lower extremity injury with treatments, such as orthoses.Conclusions:


Author(s):  
João Otacilio Libardoni dos Santos ◽  
Eliane Fátima Manfio ◽  
Felipe Pivetta Carpes ◽  
Ewertton De Souza Bezerra ◽  
Rudnei Palhano ◽  
...  

Several studies have investigated the relationship between heel pronation with plantar pressure during gait. With a degree of variability and inluence of the footwear, usually excessive pronation is associated with higher mechanical loads. However, larger loads are commonly associated with pronation. his study aims to compare the plantar pressure distribution among individuals with diferent pronation angles of the subtalar joint angle during gait with controlled speed. he maximum angle of the subtalar joint was determined by capturing images in the frontal plane and the pressure plant peaks were acquired by EMED pressure platform. he pronated group showed pressure plant peaks signiicantly higher in the lateral heel area (18%; p=0.031), medial heel (17%, p=0.034), lateral midfoot (30%; p=0.032) and medial midfoot (41%; p=0.018) when compared to the control group. Excessive pronation of the subtalar joint caused changes in plantar pressure distribution, and an increase in pressure plant peaks, especially in the heel and midfoot regions. his demonstrates the need for a speciic care of this population, mainly because the increased pressure plant peaks is related to pain in the feet and onset of injuries.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1450
Author(s):  
Alfredo Ciniglio ◽  
Annamaria Guiotto ◽  
Fabiola Spolaor ◽  
Zimi Sawacha

The quantification of plantar pressure distribution is widely done in the diagnosis of lower limbs deformities, gait analysis, footwear design, and sport applications. To date, a number of pressure insole layouts have been proposed, with different configurations according to their applications. The goal of this study is to assess the validity of a 16-sensors (1.5 × 1.5 cm) pressure insole to detect plantar pressure distribution during different tasks in the clinic and sport domains. The data of 39 healthy adults, acquired with a Pedar-X® system (Novel GmbH, Munich, Germany) during walking, weight lifting, and drop landing, were used to simulate the insole. The sensors were distributed by considering the location of the peak pressure on all trials: 4 on the hindfoot, 3 on the midfoot, and 9 on the forefoot. The following variables were computed with both systems and compared by estimating the Root Mean Square Error (RMSE): Peak/Mean Pressure, Ground Reaction Force (GRF), Center of Pressure (COP), the distance between COP and the origin, the Contact Area. The lowest (0.61%) and highest (82.4%) RMSE values were detected during gait on the medial-lateral COP and the GRF, respectively. This approach could be used for testing different layouts on various applications prior to production.


2011 ◽  
Vol 33 (3) ◽  
pp. 396-400 ◽  
Author(s):  
Karin Elisabeth Fiedler ◽  
Wijnand Jan A. Stuijfzand ◽  
Jaap Harlaar ◽  
Joost Dekker ◽  
Heleen Beckerman

1995 ◽  
Vol 10 (5) ◽  
pp. 271-274 ◽  
Author(s):  
H Chen ◽  
BM Nigg ◽  
M Hulliger ◽  
J de Koning

Sign in / Sign up

Export Citation Format

Share Document