pressure plant
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 0)

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 937
Author(s):  
Anna Trusek ◽  
Maciej Wajsprych ◽  
Andrzej Noworyta

Although the time for operating mines and coking plants in many countries is coming to an end due to climate change, we must still ensure that the pollution generated by this source of the economy is minimized. Despite the several stages of treatment of the coke-oven effluent, completed with nitrification and denitrification processes preceding final sedimentation, the stream obtained does not meet the requirements of water for coke quenching. That is why the stream after biodegradation and sedimentation was treated on membrane units to ensure water reusing in the coking plant. As the subjected stream contained both solid and dissolved pollutants, a two-stage system was proposed: low- and high-pressure membrane filtration. Industrial modules were tested on pilot units operating under industrial plant conditions. In the case of the ultrafiltration process, all the tested ultrafiltration modules fulfilled the primary task. All of them separated almost completely the turbidities present in the stream, which would have disturbed the operation of the high-pressure plant. Considering the decrease in permeate flux and the possibility of cleaning, a PCI membrane made of PVDF tubes with a diameter of 12.5 mm and pore size of 20 μm was selected. Regarding the high-pressure membrane filtration, the reverse osmosis membrane was significantly better in the removal efficiency of both organic and inorganic dissolved substances. An operating pressure of 3 MPa was chosen for the system. Hence, membrane processes, which are not used as stand-alone treatment units for coke-oven effluents, function well as a final treatment stage.


2020 ◽  
Vol 312 ◽  
pp. 05001
Author(s):  
Mfundo Nkosi ◽  
Kapil Gupta ◽  
Madindwa Mashinini

The concept of minimizing human error in maintenance is progressively gaining attention in various industries. The incorporation of human factors when solving engineering problems, particularly in maintenance, can no longer be ignored where high standards of performance are expected. The journey of improving maintenance performance through the reduction of human error begins with the understanding of causes and impact of human error in maintenance. This paper evaluates previous scholarly writings on human errors, to specifically establish the causes and impact of human error in maintenance. This study relies predominantly on the existing literature on human error in maintenance derived from published and unpublished research. The primary findings emerging from the research exhibit a number of key factors that cause a human error in maintenance such as poor management and supervision, organizational culture, incompetence, poorly written procedures, poor communication, time pressure, plant and environmental conditions, poor work design and many more. The literature review also revealed that human errors have a negative impact on safety, reliability, productivity and efficiency of the equipment. It was further discovered that equipment failures leading to accidents, incidents, loss of life and economic losses are the major effects of human error. Human error in mechanical systems’ maintenance is a serious problem which needs adequate attention in order to develop corrective and preventive measures. This review paper serves as a basis for maintenance practitioners and interested parties to develop corrective and preventive measures for minimizing human error in the maintenance of mechanical systems.


2018 ◽  
Vol 44 (3) ◽  
pp. 2091-2102 ◽  
Author(s):  
Kishore Bingi ◽  
Rosdiazli Ibrahim ◽  
Mohd Noh Karsiti ◽  
Sabo Miya Hassan ◽  
Vivekananda Rajah Harindran

Author(s):  
João Otacilio Libardoni dos Santos ◽  
Eliane Fátima Manfio ◽  
Felipe Pivetta Carpes ◽  
Ewertton De Souza Bezerra ◽  
Rudnei Palhano ◽  
...  

Several studies have investigated the relationship between heel pronation with plantar pressure during gait. With a degree of variability and inluence of the footwear, usually excessive pronation is associated with higher mechanical loads. However, larger loads are commonly associated with pronation. his study aims to compare the plantar pressure distribution among individuals with diferent pronation angles of the subtalar joint angle during gait with controlled speed. he maximum angle of the subtalar joint was determined by capturing images in the frontal plane and the pressure plant peaks were acquired by EMED pressure platform. he pronated group showed pressure plant peaks signiicantly higher in the lateral heel area (18%; p=0.031), medial heel (17%, p=0.034), lateral midfoot (30%; p=0.032) and medial midfoot (41%; p=0.018) when compared to the control group. Excessive pronation of the subtalar joint caused changes in plantar pressure distribution, and an increase in pressure plant peaks, especially in the heel and midfoot regions. his demonstrates the need for a speciic care of this population, mainly because the increased pressure plant peaks is related to pain in the feet and onset of injuries.


Sign in / Sign up

Export Citation Format

Share Document