scholarly journals Shape Sensing of a Complex Aeronautical Structure with Inverse Finite Element Method

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1388
Author(s):  
Daniele Oboe ◽  
Luca Colombo ◽  
Claudio Sbarufatti ◽  
Marco Giglio

The inverse Finite Element Method (iFEM) is receiving more attention for shape sensing due to its independence from the material properties and the external load. However, a proper definition of the model geometry with its boundary conditions is required, together with the acquisition of the structure’s strain field with optimized sensor networks. The iFEM model definition is not trivial in the case of complex structures, in particular, if sensors are not applied on the whole structure allowing just a partial definition of the input strain field. To overcome this issue, this research proposes a simplified iFEM model in which the geometrical complexity is reduced and boundary conditions are tuned with the superimposition of the effects to behave as the real structure. The procedure is assessed for a complex aeronautical structure, where the reference displacement field is first computed in a numerical framework with input strains coming from a direct finite element analysis, confirming the effectiveness of the iFEM based on a simplified geometry. Finally, the model is fed with experimentally acquired strain measurements and the performance of the method is assessed in presence of a high level of uncertainty.

Author(s):  
Liang Wang ◽  
Xue Zhang ◽  
Filippo Zaniboni ◽  
Eugenio Oñate ◽  
Stefano Tinti

AbstractNotwithstanding its complexity in terms of numerical implementation and limitations in coping with problems involving extreme deformation, the finite element method (FEM) offers the advantage of solving complicated mathematical problems with diverse boundary conditions. Recently, a version of the particle finite element method (PFEM) was proposed for analyzing large-deformation problems. In this version of the PFEM, the finite element formulation, which was recast as a standard optimization problem and resolved efficiently using advanced optimization engines, was adopted for incremental analysis whilst the idea of particle approaches was employed to tackle mesh issues resulting from the large deformations. In this paper, the numerical implementation of this version of PFEM is detailed, revealing some key numerical aspects that are distinct from the conventional FEM, such as the solution strategy, imposition of displacement boundary conditions, and treatment of contacts. Additionally, the correctness and robustness of this version of PFEM in conducting failure and post-failure analyses of landslides are demonstrated via a stability analysis of a typical slope and a case study on the 2008 Tangjiashan landslide, China. Comparative studies between the results of the PFEM simulations and available data are performed qualitatively as well as quantitatively.


2005 ◽  
Vol 128 (1) ◽  
pp. 124-130 ◽  
Author(s):  
Kerem Ün ◽  
Robert L. Spilker

In this study, we extend the penetration method, previously introduced to simulate contact of linear hydrated tissues in an efficient manner with the finite element method, to problems of nonlinear biphasic tissues in contact. This paper presents the derivation of contact boundary conditions for a biphasic tissue with hyperelastic solid phase using experimental kinematics data. Validation of the method for calculating these boundary conditions is demonstrated using a canonical biphasic contact problem. The method is then demonstrated on a shoulder joint model with contacting humerus and glenoid tissues. In both the canonical and shoulder examples, the resulting boundary conditions are found to satisfy the kinetic continuity requirements of biphasic contact. These boundary conditions represent input to a three-dimensional nonlinear biphasic finite element analysis; details of that finite element analysis will be presented in a manuscript to follow.


2014 ◽  
Vol 635-637 ◽  
pp. 549-554
Author(s):  
Yu Feng Ding ◽  
Wei Fang ◽  
De Gang Wang ◽  
Bu Yun Sheng

Finite element method is widely used in steam turbine impeller blade subsystem strength analysis aspect, but because of the complicated working environment, the steam turbine has taken different handling of loads and boundary conditions when using finite element analysis method. In this paper, Static strength of the "215mm" of 135 MW steam turbine standard blade was calculated by using traditional calculation method and finite element method. By comparing two kinds of analysis results, the work load and boundary conditions were revised, which ensured the credibility of the result of the finite element analysis; According to the analysis results of stress, concentration phenomenon was obvious, then the blade root was optimized and the optimization result was excellent.


Sign in / Sign up

Export Citation Format

Share Document