scholarly journals A New Super Resolution Framework Based on Multi-Task Learning for Remote Sensing Images

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1743
Author(s):  
Li Yan ◽  
Kun Chang

Super-resolution (SR) algorithms based on deep learning have dominated in various tasks, including medical imaging, street view surveillance and face recognition. In the remote sensing field, most of the current SR methods utilize the low-resolution (LR) images that directly bicubic downsampled the high-resolution (HR) images as not only train set but also test set, thus achieving high PSNR/SSIM scores but showing performance drop in application because the degradation model in remote sensing images is subjected to Gaussian blur with unknown parameters. Inspired by multi-task learning strategy, we propose a multiple-blur-kernel super-resolution framework (MSF), in which a multiple-blur-kernel learning module (MLM) optimizes the parameters of the network transferable and sensitive for SR procedures with different blur kernels. Besides, to simultaneously exploit the prior of the large-scale remote sensing images and recurrent information in a single test image, a class-feature capture module (CCM) and an unsupervised learning module (ULM) are leveraged in our framework. Extensive experiments show that our framework outperforms the current state-of-the-art SR algorithms in remotely sensed imagery SR with unknown Gaussian blur kernel.

2019 ◽  
Vol 11 (23) ◽  
pp. 2857 ◽  
Author(s):  
Xiaoyu Dong ◽  
Zhihong Xi ◽  
Xu Sun ◽  
Lianru Gao

Image super-resolution (SR) reconstruction plays a key role in coping with the increasing demand on remote sensing imaging applications with high spatial resolution requirements. Though many SR methods have been proposed over the last few years, further research is needed to improve SR processes with regard to the complex spatial distribution of the remote sensing images and the diverse spatial scales of ground objects. In this paper, a novel multi-perception attention network (MPSR) is developed with performance exceeding those of many existing state-of-the-art models. By incorporating the proposed enhanced residual block (ERB) and residual channel attention group (RCAG), MPSR can super-resolve low-resolution remote sensing images via multi-perception learning and multi-level information adaptive weighted fusion. Moreover, a pre-train and transfer learning strategy is introduced, which improved the SR performance and stabilized the training procedure. Experimental comparisons are conducted using 13 state-of-the-art methods over a remote sensing dataset and benchmark natural image sets. The proposed model proved its excellence in both objective criterion and subjective perspective.


2021 ◽  
Vol 13 (6) ◽  
pp. 1104
Author(s):  
Yuanfu Gong ◽  
Puyun Liao ◽  
Xiaodong Zhang ◽  
Lifei Zhang ◽  
Guanzhou Chen ◽  
...  

Previously, generative adversarial networks (GAN) have been widely applied on super resolution reconstruction (SRR) methods, which turn low-resolution (LR) images into high-resolution (HR) ones. However, as these methods recover high frequency information with what they observed from the other images, they tend to produce artifacts when processing unfamiliar images. Optical satellite remote sensing images are of a far more complicated scene than natural images. Therefore, applying the previous networks on remote sensing images, especially mid-resolution ones, leads to unstable convergence and thus unpleasing artifacts. In this paper, we propose Enlighten-GAN for SRR tasks on large-size optical mid-resolution remote sensing images. Specifically, we design the enlighten blocks to induce network converging to a reliable point, and bring the Self-Supervised Hierarchical Perceptual Loss to attain performance improvement overpassing the other loss functions. Furthermore, limited by memory, large-scale images need to be cropped into patches to get through the network separately. To merge the reconstructed patches into a whole, we employ the internal inconsistency loss and cropping-and-clipping strategy, to avoid the seam line. Experiment results certify that Enlighten-GAN outperforms the state-of-the-art methods in terms of gradient similarity metric (GSM) on mid-resolution Sentinel-2 remote sensing images.


Sensors ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. 623 ◽  
Author(s):  
Chong Fan ◽  
Xushuai Chen ◽  
Lei Zhong ◽  
Min Zhou ◽  
Yun Shi ◽  
...  

Author(s):  
Xiaochuan Tang ◽  
Mingzhe Liu ◽  
Hao Zhong ◽  
Yuanzhen Ju ◽  
Weile Li ◽  
...  

Landslide recognition is widely used in natural disaster risk management. Traditional landslide recognition is mainly conducted by geologists, which is accurate but inefficient. This article introduces multiple instance learning (MIL) to perform automatic landslide recognition. An end-to-end deep convolutional neural network is proposed, referred to as Multiple Instance Learning–based Landslide classification (MILL). First, MILL uses a large-scale remote sensing image classification dataset to build pre-train networks for landslide feature extraction. Second, MILL extracts instances and assign instance labels without pixel-level annotations. Third, MILL uses a new channel attention–based MIL pooling function to map instance-level labels to bag-level label. We apply MIL to detect landslides in a loess area. Experimental results demonstrate that MILL is effective in identifying landslides in remote sensing images.


2021 ◽  
Vol 13 (9) ◽  
pp. 1854
Author(s):  
Syed Muhammad Arsalan Bashir ◽  
Yi Wang

This paper deals with detecting small objects in remote sensing images from satellites or any aerial vehicle by utilizing the concept of image super-resolution for image resolution enhancement using a deep-learning-based detection method. This paper provides a rationale for image super-resolution for small objects by improving the current super-resolution (SR) framework by incorporating a cyclic generative adversarial network (GAN) and residual feature aggregation (RFA) to improve detection performance. The novelty of the method is threefold: first, a framework is proposed, independent of the final object detector used in research, i.e., YOLOv3 could be replaced with Faster R-CNN or any object detector to perform object detection; second, a residual feature aggregation network was used in the generator, which significantly improved the detection performance as the RFA network detected complex features; and third, the whole network was transformed into a cyclic GAN. The image super-resolution cyclic GAN with RFA and YOLO as the detection network is termed as SRCGAN-RFA-YOLO, which is compared with the detection accuracies of other methods. Rigorous experiments on both satellite images and aerial images (ISPRS Potsdam, VAID, and Draper Satellite Image Chronology datasets) were performed, and the results showed that the detection performance increased by using super-resolution methods for spatial resolution enhancement; for an IoU of 0.10, AP of 0.7867 was achieved for a scale factor of 16.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3232 ◽  
Author(s):  
Yan Liu ◽  
Qirui Ren ◽  
Jiahui Geng ◽  
Meng Ding ◽  
Jiangyun Li

Efficient and accurate semantic segmentation is the key technique for automatic remote sensing image analysis. While there have been many segmentation methods based on traditional hand-craft feature extractors, it is still challenging to process high-resolution and large-scale remote sensing images. In this work, a novel patch-wise semantic segmentation method with a new training strategy based on fully convolutional networks is presented to segment common land resources. First, to handle the high-resolution image, the images are split as local patches and then a patch-wise network is built. Second, training data is preprocessed in several ways to meet the specific characteristics of remote sensing images, i.e., color imbalance, object rotation variations and lens distortion. Third, a multi-scale training strategy is developed to solve the severe scale variation problem. In addition, the impact of conditional random field (CRF) is studied to improve the precision. The proposed method was evaluated on a dataset collected from a capital city in West China with the Gaofen-2 satellite. The dataset contains ten common land resources (Grassland, Road, etc.). The experimental results show that the proposed algorithm achieves 54.96% in terms of mean intersection over union (MIoU) and outperforms other state-of-the-art methods in remote sensing image segmentation.


Sensors ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 498 ◽  
Author(s):  
Hong Zhu ◽  
Xinming Tang ◽  
Junfeng Xie ◽  
Weidong Song ◽  
Fan Mo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document