scholarly journals Traffic Signal Control Using Hybrid Action Space Deep Reinforcement Learning

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2302
Author(s):  
Salah Bouktif ◽  
Abderraouf Cheniki ◽  
Ali Ouni

Recent research works on intelligent traffic signal control (TSC) have been mainly focused on leveraging deep reinforcement learning (DRL) due to its proven capability and performance. DRL-based traffic signal control frameworks belong to either discrete or continuous controls. In discrete control, the DRL agent selects the appropriate traffic light phase from a finite set of phases. Whereas in continuous control approach, the agent decides the appropriate duration for each signal phase within a predetermined sequence of phases. Among the existing works, there are no prior approaches that propose a flexible framework combining both discrete and continuous DRL approaches in controlling traffic signal. Thus, our ultimate objective in this paper is to propose an approach capable of deciding simultaneously the proper phase and its associated duration. Our contribution resides in adapting a hybrid Deep Reinforcement Learning that considers at the same time discrete and continuous decisions. Precisely, we customize a Parameterized Deep Q-Networks (P-DQN) architecture that permits a hierarchical decision-making process that primarily decides the traffic light next phases and secondly specifies its the associated timing. The evaluation results of our approach using Simulation of Urban MObility (SUMO) shows its out-performance over the benchmarks. The proposed framework is able to reduce the average queue length of vehicles and the average travel time by 22.20% and 5.78%, respectively, over the alternative DRL-based TSC systems.

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4291 ◽  
Author(s):  
Qiang Wu ◽  
Jianqing Wu ◽  
Jun Shen ◽  
Binbin Yong ◽  
Qingguo Zhou

With smart city infrastructures growing, the Internet of Things (IoT) has been widely used in the intelligent transportation systems (ITS). The traditional adaptive traffic signal control method based on reinforcement learning (RL) has expanded from one intersection to multiple intersections. In this paper, we propose a multi-agent auto communication (MAAC) algorithm, which is an innovative adaptive global traffic light control method based on multi-agent reinforcement learning (MARL) and an auto communication protocol in edge computing architecture. The MAAC algorithm combines multi-agent auto communication protocol with MARL, allowing an agent to communicate the learned strategies with others for achieving global optimization in traffic signal control. In addition, we present a practicable edge computing architecture for industrial deployment on IoT, considering the limitations of the capabilities of network transmission bandwidth. We demonstrate that our algorithm outperforms other methods over 17% in experiments in a real traffic simulation environment.


2021 ◽  
Vol 35 (5) ◽  
pp. 417-424
Author(s):  
Fares Bouriachi ◽  
Hicham Zatla ◽  
Bilal Tolbi ◽  
Koceila Becha ◽  
Allaeddine Ghermoul

Traffic jams and congestion in our cities are a major problem because of the huge increase in the number of cars on the road. To remedy this problem, several control methods are proposed to prevent or reduce traffic congestion based on traffic lights. There are few works using reinforcement learning technique for traffic light control and recent studies have shown promising results. However, existing works have not yet tested the methods on the real-world traffic data and they only focus on studying the rewards without interpreting the policies. In this paper, we proposed a reinforcement learning algorithm to address the traffic signal control problem in real multi-phases isolated intersection. A case study based on Algiers city is conducted the simulation results from the different scenarios show that our proposed scheme reduces the total travel time of the vehicles compared to those obtained with traffic-adaptive control.


Author(s):  
V. Indhumathi ◽  
K. Kumar

A Traffic signal control is a challenging problem and to minimize the travel time of vehicles by coordinating their movements at the road intersections. In recent years traffic signal control systems have on over simplified information and rule-based methods and we have large amounts of data, more computing power and advanced methods to drive the development of intelligent transportation. An intelligent transport system to use the machine learning methods likes reinforcement learning and to explain the acknowledged transportation approaches and a list of recent literature in traffic signal control. In this survey can foster interdisciplinary research on this important topic.


2021 ◽  
Vol 22 (2) ◽  
pp. 12-18 ◽  
Author(s):  
Hua Wei ◽  
Guanjie Zheng ◽  
Vikash Gayah ◽  
Zhenhui Li

Traffic signal control is an important and challenging real-world problem that has recently received a large amount of interest from both transportation and computer science communities. In this survey, we focus on investigating the recent advances in using reinforcement learning (RL) techniques to solve the traffic signal control problem. We classify the known approaches based on the RL techniques they use and provide a review of existing models with analysis on their advantages and disadvantages. Moreover, we give an overview of the simulation environments and experimental settings that have been developed to evaluate the traffic signal control methods. Finally, we explore future directions in the area of RLbased traffic signal control methods. We hope this survey could provide insights to researchers dealing with real-world applications in intelligent transportation systems


Sign in / Sign up

Export Citation Format

Share Document