scholarly journals Traffic Signal Control Model on Isolated Intersection Using Reinforcement Learning: A Case Study on Algiers City, Algeria

2021 ◽  
Vol 35 (5) ◽  
pp. 417-424
Author(s):  
Fares Bouriachi ◽  
Hicham Zatla ◽  
Bilal Tolbi ◽  
Koceila Becha ◽  
Allaeddine Ghermoul

Traffic jams and congestion in our cities are a major problem because of the huge increase in the number of cars on the road. To remedy this problem, several control methods are proposed to prevent or reduce traffic congestion based on traffic lights. There are few works using reinforcement learning technique for traffic light control and recent studies have shown promising results. However, existing works have not yet tested the methods on the real-world traffic data and they only focus on studying the rewards without interpreting the policies. In this paper, we proposed a reinforcement learning algorithm to address the traffic signal control problem in real multi-phases isolated intersection. A case study based on Algiers city is conducted the simulation results from the different scenarios show that our proposed scheme reduces the total travel time of the vehicles compared to those obtained with traffic-adaptive control.

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4291 ◽  
Author(s):  
Qiang Wu ◽  
Jianqing Wu ◽  
Jun Shen ◽  
Binbin Yong ◽  
Qingguo Zhou

With smart city infrastructures growing, the Internet of Things (IoT) has been widely used in the intelligent transportation systems (ITS). The traditional adaptive traffic signal control method based on reinforcement learning (RL) has expanded from one intersection to multiple intersections. In this paper, we propose a multi-agent auto communication (MAAC) algorithm, which is an innovative adaptive global traffic light control method based on multi-agent reinforcement learning (MARL) and an auto communication protocol in edge computing architecture. The MAAC algorithm combines multi-agent auto communication protocol with MARL, allowing an agent to communicate the learned strategies with others for achieving global optimization in traffic signal control. In addition, we present a practicable edge computing architecture for industrial deployment on IoT, considering the limitations of the capabilities of network transmission bandwidth. We demonstrate that our algorithm outperforms other methods over 17% in experiments in a real traffic simulation environment.


2020 ◽  
Vol 34 (01) ◽  
pp. 1153-1160 ◽  
Author(s):  
Xinshi Zang ◽  
Huaxiu Yao ◽  
Guanjie Zheng ◽  
Nan Xu ◽  
Kai Xu ◽  
...  

Using reinforcement learning for traffic signal control has attracted increasing interests recently. Various value-based reinforcement learning methods have been proposed to deal with this classical transportation problem and achieved better performances compared with traditional transportation methods. However, current reinforcement learning models rely on tremendous training data and computational resources, which may have bad consequences (e.g., traffic jams or accidents) in the real world. In traffic signal control, some algorithms have been proposed to empower quick learning from scratch, but little attention is paid to learning by transferring and reusing learned experience. In this paper, we propose a novel framework, named as MetaLight, to speed up the learning process in new scenarios by leveraging the knowledge learned from existing scenarios. MetaLight is a value-based meta-reinforcement learning workflow based on the representative gradient-based meta-learning algorithm (MAML), which includes periodically alternate individual-level adaptation and global-level adaptation. Moreover, MetaLight improves the-state-of-the-art reinforcement learning model FRAP in traffic signal control by optimizing its model structure and updating paradigm. The experiments on four real-world datasets show that our proposed MetaLight not only adapts more quickly and stably in new traffic scenarios, but also achieves better performance.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2302
Author(s):  
Salah Bouktif ◽  
Abderraouf Cheniki ◽  
Ali Ouni

Recent research works on intelligent traffic signal control (TSC) have been mainly focused on leveraging deep reinforcement learning (DRL) due to its proven capability and performance. DRL-based traffic signal control frameworks belong to either discrete or continuous controls. In discrete control, the DRL agent selects the appropriate traffic light phase from a finite set of phases. Whereas in continuous control approach, the agent decides the appropriate duration for each signal phase within a predetermined sequence of phases. Among the existing works, there are no prior approaches that propose a flexible framework combining both discrete and continuous DRL approaches in controlling traffic signal. Thus, our ultimate objective in this paper is to propose an approach capable of deciding simultaneously the proper phase and its associated duration. Our contribution resides in adapting a hybrid Deep Reinforcement Learning that considers at the same time discrete and continuous decisions. Precisely, we customize a Parameterized Deep Q-Networks (P-DQN) architecture that permits a hierarchical decision-making process that primarily decides the traffic light next phases and secondly specifies its the associated timing. The evaluation results of our approach using Simulation of Urban MObility (SUMO) shows its out-performance over the benchmarks. The proposed framework is able to reduce the average queue length of vehicles and the average travel time by 22.20% and 5.78%, respectively, over the alternative DRL-based TSC systems.


2020 ◽  
Vol 34 (04) ◽  
pp. 3414-3421 ◽  
Author(s):  
Chacha Chen ◽  
Hua Wei ◽  
Nan Xu ◽  
Guanjie Zheng ◽  
Ming Yang ◽  
...  

Traffic congestion plagues cities around the world. Recent years have witnessed an unprecedented trend in applying reinforcement learning for traffic signal control. However, the primary challenge is to control and coordinate traffic lights in large-scale urban networks. No one has ever tested RL models on a network of more than a thousand traffic lights. In this paper, we tackle the problem of multi-intersection traffic signal control, especially for large-scale networks, based on RL techniques and transportation theories. This problem is quite difficult because there are challenges such as scalability, signal coordination, data feasibility, etc. To address these challenges, we (1) design our RL agents utilizing ‘pressure’ concept to achieve signal coordination in region-level; (2) show that implicit coordination could be achieved by individual control agents with well-crafted reward design thus reducing the dimensionality; and (3) conduct extensive experiments on multiple scenarios, including a real-world scenario with 2510 traffic lights in Manhattan, New York City 1 2.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 137 ◽  
Author(s):  
Daeho Kim ◽  
Okran Jeong

As traffic congestion in cities becomes serious, intelligent traffic signal control has been actively studied. Deep Q-Network (DQN), a representative deep reinforcement learning algorithm, is applied to various domains from fully-observable game environment to traffic signal control. Due to the effective performance of DQN, deep reinforcement learning has improved speeds and various DQN extensions have been introduced. However, most traffic signal control researches were performed at a single intersection, and because of the use of virtual simulators, there are limitations that do not take into account variables that affect actual traffic conditions. In this paper, we propose a cooperative traffic signal control with traffic flow prediction (TFP-CTSC) for a multi-intersection. A traffic flow prediction model predicts future traffic state and considers the variables that affect actual traffic conditions. In addition, for cooperative traffic signal control in multi-intersection, each intersection is modeled as an agent, and each agent is trained to take best action by receiving traffic states from the road environment. To deal with multi-intersection efficiently, agents share their traffic information with other adjacent intersections. In the experiment, TFP-CTSC is compared with existing traffic signal control algorithms in a 4 × 4 intersection environment. We verify our traffic flow prediction and cooperative method.


Sign in / Sign up

Export Citation Format

Share Document