road intersections
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 104)

H-INDEX

17
(FIVE YEARS 5)

2022 ◽  
Vol 960 (1) ◽  
pp. 012020
Author(s):  
A Boroiu ◽  
E Neagu ◽  
A A Boroiu

Abstract The paper aims to explore the possibilities of improving road traffic in the central area of cities characterized by a longitudinal arrangement of the street network, with application for the case of Pitesti, where the road network in the central area consists of two main roads arranged longitudinally, having one-way regulated traffic, interconnected by several streets. A special traffic problem is reported in the city center: on the main road connecting the two boulevards, the vehicle storage space is insufficient - because the distance between the two road intersections is too small and there is no correlation between the Green phases of traffic lights in the two intersections. The research, based on traffic measurements performed with DataFromSky software and micro-simulation traffic analyses performed with Vissim PTV software, indicated that the best solution is the partial or total correlation of the green time from the traffic light intersections that delimit the connecting road artery. As, almost exclusively, the works dedicated to the correlation of green light of traffic lights treat the problem only along the road arteries, this paper raises a special issue and reveals the possibility of simple solutions, by correlating the traffic lights at the intersections connecting the main arteries.


2021 ◽  
Author(s):  
Zhiyong Shen ◽  
Zhiwei Shen ◽  
Xiao Luo ◽  
Meiting Tu ◽  
Xinghua Liu

2021 ◽  
Vol 13 (24) ◽  
pp. 4994
Author(s):  
Qing Li ◽  
Zhanzhan Lei ◽  
Jiasong Zhu ◽  
Jiaxin Chen ◽  
Tianzhu Ma

Urban road intersections are one of the key components of road networks. Due to complex and diverse traffic conditions, traffic conflicts occur frequently. Accurate traffic conflict detection allows improvement of the traffic conditions and decreases the probability of traffic accidents. Many time-based conflict indicators have been widely studied, but the sizes of the vehicles are ignored. This is a very important factor for conflict detection at urban intersections. Therefore, in this paper we propose a novel time difference conflict indicator by incorporating vehicle sizes instead of viewing vehicles as particles. Specially, we designed an automatic conflict recognition framework between vehicles at the urban intersections. The vehicle sizes are automatically extracted with the sparse recurrent convolutional neural network, and the vehicle trajectories are obtained with a fast-tracking algorithm based on the intersection-to-union ratio. Given tracking vehicles, we improved the time difference to the conflict metric by incorporating vehicle size information. We have conducted extensive experiments and demonstrated that the proposed framework can effectively recognize vehicle conflict accurately.


2021 ◽  
Author(s):  
Natalia Distefano ◽  
Salvatore Leonardi ◽  
Giulia Pulvirenti ◽  
Richard Romano ◽  
Erwin Boer ◽  
...  

Foristek ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Uswatun Hasanah ◽  
Mery Subito ◽  
Muhammad Aristo Indrajaya

Current road users cannot be separated from the number of violators, therefore traffic lights are made to regulate traffic on the road. At traffic lights, there is also a zebra crossing which serves as a means of crossing the road for pedestrians. To minimize violations at road intersections, researchers designed a tool to detect traffic violations. Traffic violation detection tool is made in prototype form using a control system with Arduino nano and software. This traffic light system uses LDR and laser sensors to detect these violations by cutting the laser which sends light to the LDR. This tool is also equipped with a webcam camera that functions to photograph violations that occur and a buzzer that functions as a warning to officers and riders in the event of a violation with an average response speed of the webcam of 2.37 seconds and the average response speed of the buzzer is 0.4 seconds. . The snapshot from the webcam is saved automatically on your PC / Laptop.


2021 ◽  
Vol 13 (19) ◽  
pp. 10704
Author(s):  
Isaac Oyeyemi Olayode ◽  
Lagouge Kwanda Tartibu ◽  
Modestus O. Okwu ◽  
Alessandro Severino

The accurate and effective prediction of the traffic flow of vehicles plays a significant role in the construction and planning of signalized road intersections. The application of artificially intelligent predictive models in the prediction of the performance of traffic flow has yielded positive results. However, much uncertainty still exists in the determination of which artificial intelligence methods effectively resolve traffic congestion issues, especially from the perspective of the traffic flow of vehicles at a four-way signalized road intersection. A hybrid algorithm, an artificial neural network trained by a particle swarm optimization model (ANN-PSO), and a heuristic Artificial Neural Network model (ANN) were compared in the prediction of the flow of traffic of vehicles using the South Africa transportation system as a case study. Two hundred and fifty-nine (259) traffic datasets were obtained from the South African road network using inductive loop detectors, video cameras, and GPS-controlled equipment. For the ANN and ANN-PSO training and testing, 219 traffic data were used for the training, and 40 were used for the testing of the ANN-PSO model, while training (160), testing (40), and validation (59) was used for the ANN. The ANN result presented a logistic sigmoid transfer function with a 13–6–1 model and a testing R2 of 0.99169 compared to the ANN-PSO result, which showed a testing performance of R2 0.99710. This result shows that the ANN-PSO model is more efficient and effective than the ANN model in the prediction of the traffic flow of vehicles at a four-way signalized road intersection. Furthermore, the ANN and ANN-PSO models are robust enough to predict traffic flow due to their better testing performance. The modelling approaches proposed in this study will assist transportation engineers and urban planners in designing a traffic control system for traffic lights at four-way signalized road intersections. Finally, the results of this research will assist transportation engineers and traffic controllers in providing traffic flow information and travel guidance for motorists and pedestrians in the optimization of their travel time decision-making.


Sign in / Sign up

Export Citation Format

Share Document