scholarly journals IMU Data and GPS Position Information Direct Fusion Based on LSTM

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2500
Author(s):  
Xingxing Guang ◽  
Yanbin Gao ◽  
Pan Liu ◽  
Guangchun Li

In recent years, the application of deep learning to the inertial navigation field has brought new vitality to inertial navigation technology. In this study, we propose a method using long short-term memory (LSTM) to estimate position information based on inertial measurement unit (IMU) data and Global Positioning System (GPS) position information. Simulations and experiments show the practicability of the proposed method in both static and dynamic cases. In static cases, vehicle stop data are simulated or recorded. In dynamic cases, uniform rectilinear motion data are simulated or recorded. The value range of LSTM hyperparameters is explored through both static and dynamic simulations. The simulations and experiments results are compared with the strapdown inertial navigation system (SINS)/GPS integrated navigation system based on kalman filter (KF). In a simulation, the LSTM method’s computed position error Standard Deviation (STD) was 52.38% of what the SINS computed. The biggest simulation radial error estimated by the LSTM method was 0.57 m. In experiments, the LSTM method computed a position error STD of 23.08% using only SINSs. The biggest experimental radial error the LSTM method estimated was 1.31 m. The position estimated by the LSTM fusion method has no cumulative divergence error compared to SINS (computed). All in all, the trained LSTM is a dependable fusion method for combining IMU data and GPS position information to estimate position.

2012 ◽  
Vol 245 ◽  
pp. 323-329 ◽  
Author(s):  
Muhammad Ushaq ◽  
Jian Cheng Fang

Inertial navigation systems exhibit position errors that tend to grow with time in an unbounded mode. This degradation is due, in part, to errors in the initialization of the inertial measurement unit and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Mitigation to this growth and bounding the errors is to update the inertial navigation system periodically with external position (and/or velocity, attitude) fixes. The synergistic effect is obtained through external measurements updating the inertial navigation system using Kalman filter algorithm. It is a natural requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertia Navigation System (SINS), Global Positioning System (GPS) and Doppler radar is presented using a centralized linear Kalman filter by treating vector measurements with uncorrelated errors as scalars. Two main advantages have been obtained with this improved scheme. First is the reduced computation time as the number of arithmetic computation required for processing a vector as successive scalar measurements is significantly less than the corresponding number of operations for vector measurement processing. Second advantage is the improved numerical accuracy as avoiding matrix inversion in the implementation of covariance equations improves the robustness of the covariance computations against round off errors.


2013 ◽  
Vol 332 ◽  
pp. 79-85
Author(s):  
Outamazirt Fariz ◽  
Muhammad Ushaq ◽  
Yan Lin ◽  
Fu Li

Strapdown Inertial Navigation Systems (SINS) displays position errors which grow with time in an unbounded manner. This degradation is due to the errors in the initialization of the inertial measurement unit, and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Improvement to this unbounded growth in errors can be made by updating the inertial navigation system solutions periodically with external position fixes, velocity fixes, attitude fixes or any combination of these fixes. The increased accuracy is obtained through external measurements updating inertial navigation system using Kalman filter algorithm. It is the basic requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertial Navigation System (SINS), Global Positioning System (GPS) is presented using a centralized linear Kalman filter.


2019 ◽  
Vol 11 (9) ◽  
pp. 1009 ◽  
Author(s):  
Le Chang ◽  
Xiaoji Niu ◽  
Tianyi Liu ◽  
Jian Tang ◽  
Chuang Qian

A Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS)/Light Detection and Ranging (LiDAR)-Simultaneous Localization and Mapping (SLAM) integrated navigation system based on graph optimization is proposed and implemented in this paper. The navigation results are obtained by the information fusion of the GNSS position, Inertial Measurement Unit (IMU) preintegration result and the relative pose from the 3D probability map matching with graph optimizing. The sliding window method was adopted to ensure that the computational load of the graph optimization does not increase with time. Land vehicle tests were conducted, and the results show that the proposed GNSS/INS/LiDAR-SLAM integrated navigation system can effectively improve the navigation positioning accuracy compared to GNSS/INS and other current GNSS/INS/LiDAR methods. During the simulation of one-minute periods of GNSS outages, compared to the GNSS/INS integrated navigation system, the root mean square (RMS) of the position errors in the North and East directions of the proposed navigation system are reduced by approximately 82.2% and 79.6%, respectively, and the position error in the vertical direction and attitude errors are equivalent. Compared to the benchmark method of GNSS/INS/LiDAR-Google Cartographer, the RMS of the position errors in the North, East and vertical directions decrease by approximately 66.2%, 63.1% and 75.1%, respectively, and the RMS of the roll, pitch and yaw errors are reduced by approximately 89.5%, 92.9% and 88.5%, respectively. Furthermore, the relative position error during the GNSS outage periods is reduced to 0.26% of the travel distance for the proposed method. Therefore, the GNSS/INS/LiDAR-SLAM integrated navigation system proposed in this paper can effectively fuse the information of GNSS, IMU and LiDAR and can significantly mitigate the navigation error, especially for cases of GNSS signal attenuation or interruption.


Author(s):  
Yuan Xu ◽  
Xiyuan Chen

Accurate position information of the pedestrians is required in many applications such as healthcare, entertainment industries, and military field. In this work, an online Cubature Kalman filter Rauch–Tung–Striebel smoothing algorithm for people’s location in indoor environment is proposed using inertial navigation system techniques with ultrawideband technology. In this algorithm, Cubature Kalman filter is employed to improve the filtering output accuracy; then, the Rauch–Tung–Striebel smoothing is used between the ultrawideband measurements updates; finally, the average value of the corrected inertial navigation system error estimation is output to compensate the inertial navigation system position error. Moreover, a real indoor test has been done for assessing the performance of the proposed model and algorithm. Test results show that the proposed model is able to reduce the sum of the absolute position error between the east direction and the north direction by about 32% compared with only the ultrawideband model, and the performance of the online Cubature Kalman filter Rauch–Tung–Striebel smoothing algorithm is slightly better than the off-line mode.


2013 ◽  
Vol 332 ◽  
pp. 104-110 ◽  
Author(s):  
Muhammad Ushaq ◽  
Fang Jian Cheng ◽  
Ali Jamshaid

The complementary characteristics of the Strapdown Inertial Navigation System (SINS) and external non-inertial navigation aids like Global Positioning System (GPS) and Celestial Navigation System (CNS) make the integrated navigation system an appealing and cost effective solution for various applications. SINS exhibits position errors owing to errors in initialization of the inertial measurement unit (IMU) and the inherent accelerometer biases and gyroscope drifts. SINS also suffer from diverging azimuth errors and an exponentially increasing vertical channel error. Pitch and roll errors also exhibit unbounded growth with time. To mitigate this behavior of SINS, periodic corrections are opted for through measurements from external non-inertial navigation aids. These corrections can be in the form of position fixing, velocity fixing and attitude fixing from external aids like GPS, GLONASS (Russian Satellite Navigation System), BEIDU(Chinese Satellite Navigation System) and Celestial Navigation Systems (CNS) etc. In this research work GPS and CNS are used as external aids for SINS and the navigation solutions of all three systems (SINS, GPS and CNS) are fused using Federated Kalman Filter (FKF). The FKF differs from the conventional Central Kalman Filter (CKF) because each measurement is processed in Local Filters (LFs), and the results are combined in a Master Filter (MF). FKF is a partitioned estimation method that uses a two stage data processing scheme, in which the outputs of sensor related LFs are subsequently combined by a large MF. Each LF is dedicated to a separate sensor subsystem, and uses data from the common reference such as SINS. The SINS acts as a cardinal system in the combination, and its data is also available as measurement input for the master filter. In this research work, information from the GPS and the CNS are dedicated to the corresponding LFs. Each LF provides its solutions to the master filter all information is fused together forming a global solution. Simulation for the proposed architecture has validated the effectiveness of the scheme, by showing the substantial precision improvement in the solutions of position, velocity and attitude as compared to the pure SINS or any other standalone system.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Huisheng Liu ◽  
Zengcai Wang ◽  
Susu Fang ◽  
Chao Li

A constrained low-cost SINS/OD filter aided with magnetometer is proposed in this paper. The filter is designed to provide a land vehicle navigation solution by fusing the measurements of the microelectromechanical systems based inertial measurement unit (MEMS IMU), the magnetometer (MAG), and the velocity measurement from odometer (OD). First, accelerometer and magnetometer integrated algorithm is studied to stabilize the attitude angle. Next, a SINS/OD/MAG integrated navigation system is designed and simulated, using an adaptive Kalman filter (AKF). It is shown that the accuracy of the integrated navigation system will be implemented to some extent. The field-test shows that the azimuth misalignment angle will diminish to less than 1°. Finally, an outliers detection algorithm is studied to estimate the velocity measurement bias of the odometer. The experimental results show the enhancement in restraining observation outliers that improves the precision of the integrated navigation system.


Sign in / Sign up

Export Citation Format

Share Document