scholarly journals A Hydraulic Pump Fault Diagnosis Method Based on the Modified Ensemble Empirical Mode Decomposition and Wavelet Kernel Extreme Learning Machine Methods

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2599
Author(s):  
Zhenbao Li ◽  
Wanlu Jiang ◽  
Sheng Zhang ◽  
Yu Sun ◽  
Shuqing Zhang

To address the problem that the faults in axial piston pumps are complex and difficult to effectively diagnose, an integrated hydraulic pump fault diagnosis method based on the modified ensemble empirical mode decomposition (MEEMD), autoregressive (AR) spectrum energy, and wavelet kernel extreme learning machine (WKELM) methods is presented in this paper. First, the non-linear and non-stationary hydraulic pump vibration signals are decomposed into several intrinsic mode function (IMF) components by the MEEMD method. Next, AR spectrum analysis is performed for each IMF component, in order to extract the AR spectrum energy of each component as fault characteristics. Then, a hydraulic pump fault diagnosis model based on WKELM is built, in order to extract the features and diagnose faults of hydraulic pump vibration signals, for which the recognition accuracy reached 100%. Finally, the fault diagnosis effect of the hydraulic pump fault diagnosis method proposed in this paper is compared with BP neural network, support vector machine (SVM), and extreme learning machine (ELM) methods. The hydraulic pump fault diagnosis method presented in this paper can diagnose faults of single slipper wear, single slipper loosing and center spring wear type with 100% accuracy, and the fault diagnosis time is only 0.002 s. The results demonstrate that the integrated hydraulic pump fault diagnosis method based on MEEMD, AR spectrum, and WKELM methods has higher fault recognition accuracy and faster speed than existing alternatives.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jian Xiong ◽  
Shulin Tian ◽  
Chenglin Yang

This paper presents a novel fault diagnosis method for analog circuits using ensemble empirical mode decomposition (EEMD), relative entropy, and extreme learning machine (ELM). First, nominal and faulty response waveforms of a circuit are measured, respectively, and then are decomposed into intrinsic mode functions (IMFs) with the EEMD method. Second, through comparing the nominal IMFs with the faulty IMFs, kurtosis and relative entropy are calculated for each IMF. Next, a feature vector is obtained for each faulty circuit. Finally, an ELM classifier is trained with these feature vectors for fault diagnosis. Via validating with two benchmark circuits, results show that the proposed method is applicable for analog fault diagnosis with acceptable levels of accuracy and time cost.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1519 ◽  
Author(s):  
Dengyun Wu ◽  
Jianwen Wang ◽  
Hong Wang ◽  
Hongxing Liu ◽  
Lin Lai ◽  
...  

Bearing is a key component of satellite inertia actuators such as moment wheel assemblies (MWAs) and control moment gyros (CMGs), and its operating state is directly related to the performance and service life of satellites. However, because of the complexity of the vibration frequency components of satellite bearing assemblies and the small loading, normal running bearings normally present similar fault characteristics in long-term ground life experiments, which makes it difficult to judge the bearing fault status. This paper proposes an automatic fault diagnosis method for bearings based on a presented indicator called the characteristic frequency ratio. First, the vibration signals of various MWAs were picked up by the bearing vibration test. Then, the improved ensemble empirical mode decomposition (EEMD) method was introduced to demodulate the envelope of the bearing signals, and the fault characteristic frequencies of the vibration signals were acquired. Based on this, the characteristic frequency ratio for fault identification was defined, and a method for determining the threshold of fault judgment was further proposed. Finally, an automatic diagnosis process was proposed and verified by using different bearing fault data. The results show that the presented method is feasible and effective for automatic monitoring and diagnosis of bearing faults.


2019 ◽  
Vol 13 (1) ◽  
pp. 4477-4492
Author(s):  
M. Firdaus Isham ◽  
M. Salman Leong ◽  
L. M. Hee ◽  
Z. A. B. Ahmad

Vibration-based monitoring and diagnosis provide an excellent and reliable monitoring strategies for maintaining and sustaining a million dollars of industrial assets. The signal processing method is one of the key elements in gearbox fault diagnosis for extracting most useful information from raw vibration signals. Variational mode decomposition (VMD) is one of the recent signal processing methods that helps to solve many limitations in traditional signal processing method. However, pre-determine the input parameters especially the mode number become a challenging task for using this method. Then, this study aims to propose an iterative approach for selecting the mode number for the VMD method by using the normalized mean value (NMV) plot. The NMV value is calculates based on the ratio of a summation of VMD modes and the input signals. The result shows that the proposed iterative VMD approach can select an accurate mode number for the VMD method. Then, the vibration signals decomposed into different VMD modes and used for gearbox fault diagnosis. Statistical features have been extracted from the selected VMD modes and pass into extreme learning machine (ELM) for fault classification. Iterative VMD-ELM provide significance improvement of about 20% higher accuracy in classification result as compared with EMD-ELM. Hence, this research study offers a new mean for gearbox diagnosis strategy.  


2013 ◽  
Vol 694-697 ◽  
pp. 1151-1154
Author(s):  
Wen Bin Zhang ◽  
Ya Song Pu ◽  
Jia Xing Zhu ◽  
Yan Ping Su

In this paper, a novel fault diagnosis method for gear was approached based on morphological filter, ensemble empirical mode decomposition (EEMD), sample entropy and grey incidence. Firstly, in order to eliminate the influence of noises, the line structure element was selected for morphological filter to denoise the original signal. Secondly, denoised vibration signals were decomposed into a finite number of stationary intrinsic mode functions (IMF) and some containing the most dominant fault information were calculated the sample entropy. Finally, these sample entropies could serve as the feature vectors, the grey incidence of different gear vibration signals was calculated to identify the fault pattern and condition. Practical results show that this method can be used in gear fault diagnosis effectively.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Zhijian Wang ◽  
Likang Zheng ◽  
Junyuan Wang ◽  
Wenhua Du

In this paper, a novel bearing intelligent fault diagnosis method based on a novel krill herd algorithm (NKH) and kernel extreme learning machine (KELM) is proposed. Firstly, multiscale dispersion entropy (MDE) is used to extract fault features of bearings to obtain a set of fault feature vectors composed of dispersion entropy. Then, it is imported into the kernel extreme learning machine for fault diagnosis. But considering the kernel function parameters σ and the error penalty factor C will affect the classification accuracy of the kernel extreme learning machine, this paper uses the novel krill herd algorithm (NKH) for their optimization. The opposite populations are added to the NKH in the initialization of population to improve its speed and prevent local optimum, and during the period of looking for the optimal solution, the impulse operator is introduced to ensure it has enough impulse to rush out of the local optimal once into the local optimum. Finally, in order to verify the effectiveness of the proposed method, it was applied to the bearing fault experiment of Case Western Reserve University and XJTU-SY bearing data set. The results show that the proposed method not only has good fault diagnosis performance and generalization but also has fast convergence speed and does not easily fall into the local optimum. Therefore, this paper provides a method for fault diagnosis under different loads. Meanwhile, the new method (NKH-KELM) is compared and analyzed with other mainstream intelligent bearing fault diagnosis methods to verify the effectiveness and accuracy of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document