scholarly journals Throughput of an IEEE 802.11 Wireless Network in the Presence of Wireless Audio Transmission: A Laboratory Analysis

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2620
Author(s):  
Ivan Forenbacher ◽  
Siniša Husnjak ◽  
Ivan Jovović ◽  
Mislav Bobić

Wireless networks, including IEEE 802.11-based or Wi-Fi networks, are inexpensive and easy to install and therefore serve as useful connectivity alternatives in areas lacking wired-network infrastructure. However, IEEE 802.11 networks may not always provide the seamless connectivity and minimal throughput required for Industry 4.0 communications because of their susceptibility to interference from other devices operating in the unlicensed “Industrial, Scientific, and Medical” frequency band. Here we analyzed how a wireless audio transmitter operating on this band influences the throughput of an IEEE 802.11 b/g/n network under laboratory conditions. Wireless audio transmission reduced mean throughput by 85%, rendering the IEEE 802.11 b/g/n network nearly unusable. Our analysis suggests that in order for IEEE 802.11 wireless networks to support Industrial 4.0 applications, attention should be paid to the physical layer as well as the data or upper layers, and critical services should not transmit on the 2.4 GHz band. These findings may contribute to understanding and managing IEEE 802.11 wireless networks in various Industry 4.0 contexts.

2010 ◽  
Vol 9 (9) ◽  
pp. 1212-1225 ◽  
Author(s):  
Ramya Raghavendra ◽  
Elizabeth M Belding ◽  
Konstantina Papagiannaki ◽  
Kevin C Almeroth

Telecom ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 228-241
Author(s):  
Jose Manuel Gimenez-Guzman ◽  
David Crespo-Sen ◽  
Ivan Marsa-Maestre

Channel assignment has become a critical configuration task in Wi-Fi networks due to the increasing number and density of devices which use the same frequency band in the radioelectric spectrum. There have been a number of research efforts that propose how to assign channels to the access points of Wi-Fi networks. However, most of them ignore the effect of clients (also called stations or STAs) in channel assignment, instead focusing only on access points (APs). In this paper, we claim that considering STAs in the channel assignment procedure yields better solutions in comparison with those obtained when STAs are ignored. To evaluate this hypothesis we have proposed a heuristic technique that includes the effect of interferences produced by STAs. Results show that taking STAs into account clearly improves the performance of the solutions both in terms of the achieved utility and in terms of the variability of results. We believe that these results will be useful to the design of future channel assignment techniques which consider the effect of STAs.


Sign in / Sign up

Export Citation Format

Share Document