scholarly journals An Improved Sensing Method of a Robotic Ultrasound System for Real-Time Force and Angle Calibration

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2927
Author(s):  
Kuan-Ju Wang ◽  
Chieh-Hsiao Chen ◽  
Jia-Jin (Jason) Chen ◽  
Wei-Siang Ciou ◽  
Cheng-Bin Xu ◽  
...  

An ultrasonic examination is a clinically universal and safe examination method, and with the development of telemedicine and precision medicine, the robotic ultrasound system (RUS) integrated with a robotic arm and ultrasound imaging system receives increasing attention. As the RUS requires precision and reproducibility, it is important to monitor the real-time calibration of the RUS during examination, especially the angle of the probe for image detection and its force on the surface. Additionally, to speed up the integration of the RUS and the current medical ultrasound system (US), the current RUSs mostly use a self-designed fixture to connect the probe to the arm. If the fixture has inconsistencies, it may cause an operating error. In order to improve its resilience, this study proposed an improved sensing method for real-time force and angle calibration. Based on multichannel pressure sensors, an inertial measurement unit (IMU), and a novel sensing structure, the ultrasonic probe and robotic arm could be simply and rapidly combined, which rendered real-time force and angle calibration at a low cost. The experimental results show that the average success rate of the downforce position identification achieved was 88.2%. The phantom experiment indicated that the method could assist the RUS in the real-time calibration of both force and angle during an examination.

2017 ◽  
Vol T170 ◽  
pp. 014027 ◽  
Author(s):  
A Huber ◽  
D Kinna ◽  
V Huber ◽  
G Arnoux ◽  
I Balboa ◽  
...  

Author(s):  
Wafa Batayneh ◽  
Ahmad Bataineh ◽  
Samer Abandeh ◽  
Mohammad Al-Jarrah ◽  
Mohammad Banisaeed ◽  
...  

Abstract In this paper, a muscle gesture computer Interface (MGCI) system for robot navigation Control employing a commercial wearable MYO gesture Control armband is proposed. the motion and gesture control device from Thalamic Labs. The software interface is developed using LabVIEW and Visual Studio C++. The hardware Interface between the Thalamic lab’s MYO armband and the robotic arm has been implemented using a National Instruments My RIO, which provides real time EMG data needed. This system allows the user to control a three Degrees of freedom robotic arm remotely by his/her Intuitive motion by Combining the real time Electromyography (EMG) signal and inertial measurement unit (IMU) signals. Computer simulations and experiments are developed to evaluate the feasibility of the proposed System. This system will allow a person to wear this/her armband and move his/her hand and the robotic arm will imitate the motion of his/her hand. The armband can pick up the EMG signals of the person’s hand muscles, which is a time varying noisy signal, and then process this MYO EMG signals using LabVIEW and make classification of this signal in order to evaluate the angles which are used as feedback to servo motors needed to move the robotic arm. A simulation study of the system showed very good results. Tests show that the robotic arm can imitates the arm motion at an acceptable rate and with very good accuracy.


Author(s):  
Haodong Chen ◽  
Ming C. Leu ◽  
Wenjin Tao ◽  
Zhaozheng Yin

Abstract With the development of industrial automation and artificial intelligence, robotic systems are developing into an essential part of factory production, and the human-robot collaboration (HRC) becomes a new trend in the industrial field. In our previous work, ten dynamic gestures have been designed for communication between a human worker and a robot in manufacturing scenarios, and a dynamic gesture recognition model based on Convolutional Neural Networks (CNN) has been developed. Based on the model, this study aims to design and develop a new real-time HRC system based on multi-threading method and the CNN. This system enables the real-time interaction between a human worker and a robotic arm based on dynamic gestures. Firstly, a multi-threading architecture is constructed for high-speed operation and fast response while schedule more than one task at the same time. Next, A real-time dynamic gesture recognition algorithm is developed, where a human worker’s behavior and motion are continuously monitored and captured, and motion history images (MHIs) are generated in real-time. The generation of the MHIs and their identification using the classification model are synchronously accomplished. If a designated dynamic gesture is detected, it is immediately transmitted to the robotic arm to conduct a real-time response. A Graphic User Interface (GUI) for the integration of the proposed HRC system is developed for the visualization of the real-time motion history and classification results of the gesture identification. A series of actual collaboration experiments are carried out between a human worker and a six-degree-of-freedom (6 DOF) Comau industrial robot, and the experimental results show the feasibility and robustness of the proposed system.


Author(s):  
Satyendra Pratap Singh ◽  
S.P. Singh

Series of blackouts encountered in recent years in power system have been occurred because either of voltage or angle instability or both together was not detected within time and progressive voltage or angle instability further degraded the system condition, because of increase in loading. This paper presents the real-time assessment methodology of voltage stability using Phasor Measurement Unit (PMU) with observability of load buses only in power network. PMUs are placed at strategically obtained location such that minimum number of PMU’s can make all load buses observable. Data obtained by PMU’s are used for voltage stability assessment with the help of successive change in the angle of bus voltage with respect to incremental load, which is used as on-line voltage stability predictor (VSP). The real-time voltage phasors obtained by PMU’s are used as real time voltage stability indicator. The case study has been carried out on IEEE-14 bus system and IEEE-30 bus systems to demonstrate the results.


2017 ◽  
Vol 12 (12) ◽  
pp. C12058-C12058 ◽  
Author(s):  
W.A.J. Vijvers ◽  
R.T. Mumgaard ◽  
Y. Andrebe ◽  
I.G.J. Classen ◽  
B.P. Duval ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7340
Author(s):  
Wenbo Na ◽  
Siyu Guo ◽  
Yanfeng Gao ◽  
Jianxing Yang ◽  
Junjie Huang

The reliability and safety of the cascade system, which is widely applied, have attached attention increasingly. Fault detection and diagnosis can play a significant role in enhancing its reliability and safety. On account of the complexity of the double closed-loop system in operation, the problem of fault diagnosis is relatively complex. For the single fault of the second-order valued system sensors, a real-time fault diagnosis method based on data-driven is proposed in this study. Off-line data is employed to establish static fault detection, location, estimation, and separation models. The static models are calibrated with on-line data to obtain the real-time fault diagnosis models. The real-time calibration, working flow and anti-interference measures of the real-time diagnosis system are given. Experiments results demonstrate the validity and accuracy of the fault diagnosis method, which is suitable for the general cascade system.


Sign in / Sign up

Export Citation Format

Share Document