scholarly journals Study of Low Terahertz Radar Signal Backscattering for Surface Identification

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2954
Author(s):  
Shahrzad Minooee Sabery ◽  
Aleksandr Bystrov ◽  
Miguel Navarro-Cía ◽  
Peter Gardner ◽  
Marina Gashinova

This study explores the scattering of signals within the mm and low Terahertz frequency range, represented by frequencies 79 GHz, 150 GHz, 300 GHz, and 670 GHz, from surfaces with different roughness, to demonstrate advantages of low THz radar for surface discrimination for automotive sensing. The responses of four test surfaces of different roughness were measured and their normalized radar cross sections were estimated as a function of grazing angle and polarization. The Fraunhofer criterion was used as a guideline for determining the type of backscattering (specular and diffuse). The proposed experimental technique provides high accuracy of backscattering coefficient measurement depending on the frequency of the signal, polarization, and grazing angle. An empirical scattering model was used to provide a reference. To compare theoretical and experimental results of the signal scattering on test surfaces, the permittivity of sandpaper has been measured using time-domain spectroscopy. It was shown that the empirical methods for diffuse radar signal scattering developed for lower radar frequencies can be extended for the low THz range with sufficient accuracy. The results obtained will provide reference information for creating remote surface identification systems for automotive use, which will be of particular advantage in surface classification, object classification, and path determination in autonomous automotive vehicle operation.

1990 ◽  
Vol 137 (4) ◽  
pp. 237 ◽  
Author(s):  
D.A. Edwards ◽  
R.A. McCulloch ◽  
W.T. Shaw

Author(s):  
Ane Bang-Kittilsen ◽  
Terje Midtbø

AbstractGeologists struggle to communicate the uncertainty that arise when mapping and interpreting the geological subsurface. Today, open data sharing policies make new value of geological information possible for a broader user group of non-experts. It is crucial to develop standard methods for visualizing uncertainty to increase the usability of geological information. In this study, a web experiment was set up to analyze whether and how different design choices influence the sense of uncertainty. Also, questions about the intuitiveness of symbols were asked. Two-hundred ten participants from different countries completed the experiment, both experts and non-experts in geology. Traditional visualization techniques in geology, like dashed lines, dotted lines and question mark, were tested. In addition, other visualizations were tested, such as hatched area and variations of symbol size, zoom levels and reference information. The results show that design choices have an impact on the participants’ assessment of uncertainty. The experts inquire about crucial information if it is not present. The results also suggest that when visualizing uncertainty, all the elements in the representation, and specifically the line and area symbols that delineate and colour the features, must work together to make the right impression.


2005 ◽  
Vol 13 ◽  
pp. 763-763
Author(s):  
Donald B. Campbell ◽  
John K. Harmon ◽  
Micael C. Nolan ◽  
Steven J. Ostro

Nine comets have been detected with either the Arecibo (12.6 cm wavelength) or Goldstone (3.5 cm) radar systems. Included are six nucleus detections and five detections of echoes from coma grains. The radar backscatter cross sections measured for the nuclei correlate well with independent estimates of their sizes and are indicative of surface densities in the range of 0.5 to 1.0 g cm-3. Like most asteroids, comets appear to have surfaces that are very rough at scales much larger than the radar wavelength. Coma echo models can explain the radar cross sections using grain size distributions that include a substantial population of cm-sized grains. A long term goal of the cometary radar program has been the high resolution imaging of a cometary nucleus. Eleven short period comets are potentially detectable over the next two decades a few of which may be suitable for imaging. We are always waiting for the arrival of a new comet with an orbit that brings it within 0.1 AU of the earth.


Author(s):  
Takehiko Kobayashi ◽  
Naoto Takahashi ◽  
Makoto Yoshikawa ◽  
Kikuo Tsunoda ◽  
Nobuyuki Tenno

Sign in / Sign up

Export Citation Format

Share Document