Normalized Radar Cross Sections of Sea Surface Estimated using Asymptotic and Semi-Empirical Methods Inc Band

Author(s):  
Honglei Zheng ◽  
Ali Khenchaf ◽  
Helmi Ghanmi ◽  
Yunhua Wang ◽  
Chaofang Zhao
2021 ◽  
Vol 13 (13) ◽  
pp. 2443
Author(s):  
Honglei Zheng ◽  
Jie Zhang ◽  
Ali Khenchaf ◽  
Xiao-Ming Li

In the past decades, Bragg scattering has been considered to be an important scattering mechanism of microwave backscattering from sea surfaces. However, as reported in many recent literatures, non-Bragg scattering (which is often attributed to wave breaking) also makes a significant impact on radar scattering, especially for Horizontal–Horizontal (HH) polarized radar signals. To date, we know far less about non-Bragg scattering than Bragg scattering. Herein, this paper carries out an investigation on non-Bragg scattering and its effect on radar echoes at moderate incidence angles, both for oil-free and oil-covered sea surfaces. This paper firstly presents a systematic comparison of several sea spectra commonly used for the simulation of microwave scattering from sea surfaces. It is found that none of them perform well for the description of Bragg waves. Then, the “pure” Bragg wave spectra are inverted in the framework of the two-scale model (TSM) and geophysical model functions (GMFs). The normalized radar cross sections (NRCS) related to total scattering, non-Bragg scattering, and “pure” Bragg scattering in C, X, and Ku-bands are simulated under various conditions (i.e., incidence angles, wind speeds, and wind directions). Quantitative assessments of the relative contributions of non-Bragg scattering to total scattering are conducted. We also perform a survey on the non-Bragg scattering from the oil-covered sea surface. This article provides some new insights for a better understanding of the non-Bragg microwave scattering from rough sea surfaces at moderate incidence angles.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2954
Author(s):  
Shahrzad Minooee Sabery ◽  
Aleksandr Bystrov ◽  
Miguel Navarro-Cía ◽  
Peter Gardner ◽  
Marina Gashinova

This study explores the scattering of signals within the mm and low Terahertz frequency range, represented by frequencies 79 GHz, 150 GHz, 300 GHz, and 670 GHz, from surfaces with different roughness, to demonstrate advantages of low THz radar for surface discrimination for automotive sensing. The responses of four test surfaces of different roughness were measured and their normalized radar cross sections were estimated as a function of grazing angle and polarization. The Fraunhofer criterion was used as a guideline for determining the type of backscattering (specular and diffuse). The proposed experimental technique provides high accuracy of backscattering coefficient measurement depending on the frequency of the signal, polarization, and grazing angle. An empirical scattering model was used to provide a reference. To compare theoretical and experimental results of the signal scattering on test surfaces, the permittivity of sandpaper has been measured using time-domain spectroscopy. It was shown that the empirical methods for diffuse radar signal scattering developed for lower radar frequencies can be extended for the low THz range with sufficient accuracy. The results obtained will provide reference information for creating remote surface identification systems for automotive use, which will be of particular advantage in surface classification, object classification, and path determination in autonomous automotive vehicle operation.


1990 ◽  
Vol 137 (4) ◽  
pp. 237 ◽  
Author(s):  
D.A. Edwards ◽  
R.A. McCulloch ◽  
W.T. Shaw

Geotecnia ◽  
2015 ◽  
Vol 135 ◽  
pp. 89-113
Author(s):  
Jean Felix Cabette ◽  
◽  
<br>Heloisa Helena Silva Gonçalves ◽  
<br>Fernando Antônio Marinho ◽  
◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 431
Author(s):  
Giorgio Turri ◽  
Scott Webster ◽  
Michael Bass ◽  
Alessandra Toncelli

Spectroscopic properties of neodymium-doped yttrium lithium fluoride were measured at different temperatures from 35 K to 350 K in specimens with 1 at% Nd3+ concentration. The absorption spectrum was measured at room temperature from 400 to 900 nm. The decay dynamics of the 4F3/2 multiplet was investigated by measuring the fluorescence lifetime as a function of the sample temperature, and the radiative decay time was derived by extrapolation to 0 K. The stimulated-emission cross-sections of the transitions from the 4F3/2 to the 4I9/2, 4I11/2, and 4I13/2 levels were obtained from the fluorescence spectrum measured at different temperatures, using the Aull–Jenssen technique. The results show consistency with most results previously published at room temperature, extending them over a broader range of temperatures. A semi-empirical formula for the magnitude of the stimulated-emission cross-section as a function of temperature in the 250 K to 350 K temperature range, is presented for the most intense transitions to the 4I11/2 and 4I13/2 levels.


2008 ◽  
Vol 16 (01) ◽  
pp. 55-70 ◽  
Author(s):  
SUZANNE T. MCDANIEL

Rough surface scattering theory is applied to the problem of estimating gravity-capillary wavenumber spectra from measurements of sea surface backscatter at high acoustic frequencies. Ensemble averaged scattering cross sections predicted by small-slope expansions are evaluated to examine the inversion of acoustic data assuming Bragg scatter. The ratio of the full fourth-order small-slope and Bragg predictions is found to exhibit a minimum value of ~ 2dB at moderate angles of incidence. At such angles, the corrections to perturbation theory depend weakly on acoustic frequency and environmental conditions. This latter finding indicates that only a modest effort is required to monitor sea surface conditions to estimate the correction. Corrections to Bragg predictions increase rapidly with increasing incidence angle and at high angles, the fourth-order contributions of the small-slope and extended small-slope expansions differ. This finding casts some doubt on the applicability of small-slope approximations to predict scattering at high-incidence angles.


2006 ◽  
Vol 19 (13) ◽  
pp. 3279-3293 ◽  
Author(s):  
X. Quan ◽  
M. Hoerling ◽  
J. Whitaker ◽  
G. Bates ◽  
T. Xu

Abstract In this study the authors diagnose the sources for the contiguous U.S. seasonal forecast skill that are related to sea surface temperature (SST) variations using a combination of dynamical and empirical methods. The dynamical methods include ensemble simulations with four atmospheric general circulation models (AGCMs) forced by observed monthly global SSTs from 1950 to 1999, and ensemble AGCM experiments forced by idealized SST anomalies. The empirical methods involve a suite of reductions of the AGCM simulations. These include uni- and multivariate regression models that encapsulate the simultaneous and one-season lag linear connections between seasonal mean tropical SST anomalies and U.S. precipitation and surface air temperature. Nearly all of the AGCM skill in U.S. precipitation and surface air temperature, arising from global SST influences, can be explained by a single degree of freedom in the tropical SST field—that associated with the linear atmospheric signal of El Niño–Southern Oscillation (ENSO). The results support previous findings regarding the preeminence of ENSO as a U.S. skill source. The diagnostic methods used here exposed another skill source that appeared to be of non-ENSO origins. In late autumn, when the AGCM simulation skill of U.S. temperatures peaked in absolute value and in spatial coverage, the majority of that originated from SST variability in the subtropical west Pacific Ocean and the South China Sea. Hindcast experiments were performed for 1950–99 that revealed most of the simulation skill of the U.S. seasonal climate to be recoverable at one-season lag. The skill attributable to the AGCMs was shown to achieve parity with that attributable to empirical models derived purely from observational data. The diagnostics promote the interpretation that only limited advances in U.S. seasonal prediction skill should be expected from methods seeking to capitalize on sea surface predictors alone, and that advances that may occur in future decades could be readily masked by inherent multidecadal fluctuations in skill of coupled ocean–atmosphere systems.


Sign in / Sign up

Export Citation Format

Share Document