scholarly journals Tilted-Beam Antenna Based on SSPPs-TL with Stable Gain

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3288
Author(s):  
Dujuan Wei ◽  
Youlin Geng ◽  
Pengquan Zhang ◽  
Zhonghai Zhang ◽  
Chuan Yin

In this paper, a titled-beam antenna based on spoof surface plasmon polaritons (SSPPs) transmission lines (TLs) is proposed. The parallel SSPPs-TL is a slow-wave TL, which is able to limit waves in the TL strictly. By periodically introducing a set of tapered stubs along the SSPPs-TL, the backward endfire beams are formed by the surface waves in the slow-wave radiation region. Then, through the placement of a big metal plate below the endfire antenna, the backward endfire beams are tilted, and the tilted angle of the beams are steered by the distance of the metal plate and antenna. Over the band of 5.7 GHz~7.0 GHz, the tilted antenna performs constant shapes of radiation patterns. The gain keeps stable at around 12 dBi and the 1-dB gain bandwidth is 20%. The measured results of the fabricated prototypes confirm the design theory and simulated results.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chia Ho Wu ◽  
Linfang Shen ◽  
Hang Zhang ◽  
Jinhua Yan ◽  
Da Jun Hou ◽  
...  

AbstractIn this paper, the characteristics of a class of transmission lines which support spoof surface plasmon polaritons are investigated both numerically and experimentally. In order to provide the characteristic impedance of spoof surface plasmon polaritons for PCB designers, the equivalent circuit parameters of the microstrip line periodically structured on subwavelength scale are extracted with the numerical method. It is found that the equivalent circuit parameters significantly vary with frequency when the subwavelength periodic structure is introduced into the edge of the conventional microstrip line. The results of time-domain measurements show that spoof surface plasmon polaritons have remarkable advantage over conventional microstrip lines and can be directly used in actual high-speed circuits, which is helpful for eliminating the doubts whether the metamaterials can be directly used in actual circuits.


Sign in / Sign up

Export Citation Format

Share Document