differential transmission
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 40)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Vol 939 (1) ◽  
pp. 012024
Author(s):  
A Abdukarimov ◽  
I Saidakulov

Abstract This article discusses the dynamics of a ten-link tooth-lever differential transmission mechanism. The force analysis of the transmission mechanism is given in order to find the dependence for determining the reaction in kinematic pairs and the balancing moment of the pair of forces and to show some features of the tooth-lever transmission mechanism. The force calculation was carried out taking into account the accelerated movement of links since their acceleration in modern high-speed machines is very significant. To obtain a more accurate concept of the external forces and moments loading the transmission mechanism in the accelerated movement of the links, the dynamics of the transient process of roller technological machines was considered. Cases of feeding the processed material were considered both from the side of the intermediate gears and from the side opposite to the parasitic gears. Dependencies were obtained to determine the force characteristics of this mechanism. Cases of pressure unloading and overloading on the processed material from the side of the free shaft, depending on the location of the transmission mechanism are shown. The dependence of the reaction force of intermediate gears on their own axes of rotation on the angle between the levers is shown. With an increase in the angle between the levers, the reaction of the intermediate gears on the axis of rotation increases.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4256
Author(s):  
Josip Jakovac ◽  
Leonardo Marušić ◽  
Denise Andrade-Guevara ◽  
Julio C. Chacón-Torres ◽  
Vito Despoja

A theoretical formulation of the electromagnetic response in graphene ribbons on dielectric substrate is derived in the framework of the ab initio method. The formulation is applied to calculate the electromagnetic energy absorption in an array of potassium-doped graphene nanoribbons (KC8-NR) deposited on a dielectric Al2O3 substrate. It is demonstrated that the replacement of the flat KC8 by an array of KC8-NR transforms the Drude tail in the absorption spectra into a series of infrared-active Dirac plasmon resonances. It is also shown that the series of Dirac plasmon resonances, when unfolded across the extended Brillouin zones, resembles the Dirac plasmon. The Dirac plasmon resonances’ band structure, within the first Brillouin zone, is calculated. Finally, an excellent agreement between the theoretical absorption and recent experimental results for differential transmission through graphene on an SiO2/Si surface is presented. The theoretically predicted micrometer graphene nanoribbons intercalation compound (GNRIC) in a stage-I-like KC8 is confirmed to be synthesized for Dirac plasmon resonances.


2021 ◽  
Author(s):  
Haider A. Chishty ◽  
Andrea Zonnino ◽  
Andria J. Farrens ◽  
Fabrizio Sergi

<div><div><div><p>We present the UDiffWrist (UDW), a low-impedance 2-DOF wrist exoskeleton featuring a cable-differential transmission. To investigate the effect of different design strategies for achieving kinematic compatibility, we developed two versions of this robot: One version (UDW-C) achieves kinematic compatibility only in the case of perfect alignment between human and robot joints. The second version (UDW-NC) connects the human and robot via passive joints to achieve kinematic compatibility regardless of alignment between human and robot joints. Through characterization experiments, we found that the UDW-NC was more robust to misalignments than the UDW-C: the increase in maximum interaction torque associated with misalignments was greater for the UDW-C than the UDW-NC robot (p = 0.003). However, the UDW-NC displayed greater Coulomb friction (p < 0.001). Further, Coulomb friction increased more for the UDW-NC than the UDW-C in the presence of misalignments between the human and robot axes (p < 0.001). We also found that torque transfer was more accurate in the UDW-C than in the UDW-NC. These results suggest that for the small (10 deg) 2-DOF wrist movements considered, the advantages of the UDW-NC in terms of kinematic compatibility are likely overshadowed by the negative effects in friction and torque transfer accuracy.</p></div></div></div>


2021 ◽  
Author(s):  
Haider A. Chishty ◽  
Andrea Zonnino ◽  
Andria J. Farrens ◽  
Fabrizio Sergi

<div><div><div><p>We present the UDiffWrist (UDW), a low-impedance 2-DOF wrist exoskeleton featuring a cable-differential transmission. To investigate the effect of different design strategies for achieving kinematic compatibility, we developed two versions of this robot: One version (UDW-C) achieves kinematic compatibility only in the case of perfect alignment between human and robot joints. The second version (UDW-NC) connects the human and robot via passive joints to achieve kinematic compatibility regardless of alignment between human and robot joints. Through characterization experiments, we found that the UDW-NC was more robust to misalignments than the UDW-C: the increase in maximum interaction torque associated with misalignments was greater for the UDW-C than the UDW-NC robot (p = 0.003). However, the UDW-NC displayed greater Coulomb friction (p < 0.001). Further, Coulomb friction increased more for the UDW-NC than the UDW-C in the presence of misalignments between the human and robot axes (p < 0.001). We also found that torque transfer was more accurate in the UDW-C than in the UDW-NC. These results suggest that for the small (10 deg) 2-DOF wrist movements considered, the advantages of the UDW-NC in terms of kinematic compatibility are likely overshadowed by the negative effects in friction and torque transfer accuracy.</p></div></div></div>


Author(s):  
M.S. Tokar ◽  
◽  
I.V. Ryabov ◽  

In radio communication systems, when implementing coherent types of reception, it is assumed that the receiver knows information about the state of the communication channel, which is achieved by introducing signal redundancy (pilot signals). The frequency of sending pilot signals depends on factors that change the state of the communication channel, one of which is the high speed of movement of mobile stations. The use of pilot signals not only hinders the efficient use of the radio frequency resource, but also, in the case of fast fading, does not allow the channel to be estimated and tracked with the required accuracy. These disadvantages can be eliminated by using the differential transmission method, for the implementation of which there is no need to know information about the state of the channel. The application of the principles of differential transmission to space-time coding does not find sufficiently effective solutions that combine low computational complexity and energy efficiency of differential coding methods.


2021 ◽  
Vol 53 (4) ◽  
Author(s):  
Balázs Matolcsy ◽  
Eszter Udvary ◽  
Ágoston Schranz

AbstractVehicle-to-Vehicle (V2V) Communication is one of the most promising application opportunities of Visible Light Communication (VLC). This paper suggests a novel transmission technique for VLC-V2V applications, called 2x2 Differential Transmission (2x2 DT). This transmission method exhibits excellent common-mode optical noise rejection performance. This beneficiary property is presented first with simulation results and later with real-life urban traffic measurement as well. After the promising simulation results, a demonstrational automotive-grade VLC-V2V link is presented and investigated for evaluation purposes. The link does not contain electrical filters, optical filters nor optical lenses, hence link costs are kept low and versatility is preserved. With our proposed 2x2 differential solution, both the transmission quality and common-mode optical noise rejection performance is outstanding. Due to the increased sensitivity of the differential VLC transmission regarding crosstalk between channels, a method is suggested for crosstalk reduction for high-quality differential transmission.


2021 ◽  
Vol 304 ◽  
pp. 02010
Author(s):  
Abdusalam Abdukarimov ◽  
Sanjarbek Madaminov ◽  
Asrorbek Abdullajonov

This article deals with the synthesis of a ten-link tooth-lever differential transmission mechanism. The article contains an analytical review of modern scientific research on the synthesis of tooth-lever differential transmission mechanisms of roller machines with a variable center distance of the working shafts; a method for the synthesis of toothlever differential transmission mechanisms of roller machines with a variable center distance of the working shafts described on the example of a ten-link tooth-lever differential transmission mechanism; the conditions for the synthesis of the mechanism given and substantiated when this mechanism is used in a roller machine; one of its working shafts has the ability to rotate about its own axis, and the second working shaft, in addition to rotation about its own axis, has the ability to move relative to the first working shaft along a line passing through the center the axes of rotation of both working shafts; the geometric synthesis of the tooth and lever contours of the mechanism, the dynamic synthesis of the mechanism, taking into account the angles of pressure between the lever link of the lever contour of the mechanism, which allows us to determine the optimal working position of the mechanism where the angles of pressure are within acceptable limits; the graphs of changes in the angles of pressure between the links of the lever contour of the mechanism, plotted depending on its position.


Sign in / Sign up

Export Citation Format

Share Document