scholarly journals Evaluation of Misalignment Effect in Vehicle-to-Vehicle Visible Light Communications: Experimental Demonstration of a 75 Meters Link

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3577
Author(s):  
Sebastian-Andrei Avătămăniței ◽  
Cătălin Beguni ◽  
Alin-Mihai Căilean ◽  
Mihai Dimian ◽  
Valentin Popa

The use of visible light communications technology in communication-based vehicle applications is gaining more and more interest as the research community is constantly overcoming challenge after challenge. In this context, this article addresses the issues associated with the use of Visible Light Communications (VLC) technology in Vehicle-to-Vehicle (V2V) communications, while focusing on two crucial issues. On the one hand, it aims to investigate the achievable communication distance in V2V applications while addressing the least favorable case, namely the one when a standard vehicle rear lighting system is used as a VLC emitter. On the other hand, this article investigates another highly unfavorable use case scenario, i.e., the case when two vehicles are located on adjacent lanes, rather than on the same lane. In order to evaluate the compatibility of the VLC technology with the usage in inter-vehicle communication, a VLC prototype is intensively evaluated in outdoor conditions. The experimental results show a record V2V VLC distance of 75 m, while providing a Bit Error Ratio (BER) of 10−7–10−6. The results also show that the VLC technology is able to provide V2V connectivity even in a situation where the vehicles are located on adjacent lanes, without a major impact on the link performances. Nevertheless, this situation generates an initial no-coverage zone, which is determined by the VLC receiver reception angle, whereas in some cases, vehicle misalignment can generate a BER increase that can go up to two orders of magnitude.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xin Chen ◽  
Yaolin Zhu ◽  
Yong Fang

In this paper, an extension spatial channel model (SCM) for vehicle-to-vehicle (V2V) communications is proposed. To efficiently illustrate the real-world scenarios and reflect nonstationary properties of V2V channels, all effective scattering objects are subdivided into three categories of clusters according to the relative position of clusters. Besides, a birth-death process is introduced to model the appearance and disappearance of clusters on both the array and time axes. Their impacts on V2V channels are investigated via statistical properties including correlation functions. Additionally, a closed-form expression of channel impulse response (CIR) is derived from an extension SCM and cluster-based models. Furthermore, the spatial and frequency statistical properties of the reference model are thoroughly investigated. Finally, simulation results show that the proposed SCM V2V model is in close agreement with previously reported results, thereby validating the accuracy and effectiveness of the proposed model.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1309
Author(s):  
Keshvinder Singh Randhava ◽  
Mardeni Roslee ◽  
Zubaida Yusoff

Background: The exponential increase in pattern of vehicles on the roads demands a need to develop a vehicular infrastructure that may not only ease congestions and provide a better experience but also pivot the levels of safety among users. The development of wireless technology has made it convenient for machines, devices and vehicles to interact with one another. The efficacy of this wireless communications relies on utilising current and available technology to enable information to be shared efficiently. In the wake of the available advancement in wireless technology, a new dynamic spectrum management (DSM) in vehicle-to-vehicle (V2V) communication that coexists with the existing Long-Term Evolution (LTE) network to increase the throughput in V2V communication is proposed. This will provide some solutions to enable a more efficient vehicular infrastructure. Methods: This paper focuses on the utilization of DSM in V2V communications by selecting an appropriate frequency band through the selection of available licensed and unlicensed frequency bands for vehicles. Further investigations are done to identify the effect of interference in the dynamic spectrum by observing the path loss, SINR, and the throughput with various interfering users. Results: The results show that the performance of the proposed DSM augments a significant improvement in the overall throughput and the signal-to-interference-plus-noise ratio (SINR) value is reduced by up to 60% when compared to the fixed spectrum allocation. Conclusions: Although the dynamic spectrum is still affected by the interference from the existing cellular users, the throughput of the dynamic spectrum remains sufficient to transmit the information to other vehicles.


Sign in / Sign up

Export Citation Format

Share Document