scholarly journals Soft-Sensor for Class Prediction of the Percentage of Pentanes in Butane at a Debutanizer Column

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3991
Author(s):  
Iratxe Niño-Adan ◽  
Itziar Landa-Torres ◽  
Diana Manjarres ◽  
Eva Portillo ◽  
Lucía Orbe

Refineries are complex industrial systems that transform crude oil into more valuable subproducts. Due to the advances in sensors, easily measurable variables are continuously monitored and several data-driven soft-sensors are proposed to control the distillation process and the quality of the resultant subproducts. However, data preprocessing and soft-sensor modelling are still complex and time-consuming tasks that are expected to be automatised in the context of Industry 4.0. Although recently several automated learning (autoML) approaches have been proposed, these rely on model configuration and hyper-parameters optimisation. This paper advances the state-of-the-art by proposing an autoML approach that selects, among different normalisation and feature weighting preprocessing techniques and various well-known Machine Learning (ML) algorithms, the best configuration to create a reliable soft-sensor for the problem at hand. As proven in this research, each normalisation method transforms a given dataset differently, which ultimately affects the ML algorithm performance. The presented autoML approach considers the features preprocessing importance, including it, and the algorithm selection and configuration, as a fundamental stage of the methodology. The proposed autoML approach is applied to real data from a refinery in the Basque Country to create a soft-sensor in order to complement the operators’ decision-making that, based on the operational variables of a distillation process, detects 400 min in advance with 98.925% precision if the resultant product does not reach the quality standards.

2018 ◽  
Vol 41 (3) ◽  
pp. 737-748 ◽  
Author(s):  
Shuting Liu ◽  
Xianwen Gao ◽  
Wenhai Qi ◽  
Shumei Zhang

Propylene conversion is important to economic efficiency in the production of acrylic acid. Hence, the online measurement of propylene conversion is becoming more and more important. The current measurement method is mainly uses an offline meteorological chromatography analyser, which is difficult to measure accurately in real time. A soft sensor modelling method of propylene conversion based on Takagi-Sugeno (T-S) fuzzy neural network optimized by independent component analysis and mutual information is proposed in this paper. Firstly, fast independent component analysis-based denoising strategy is developed to remove the noise in the measurement of variables influenced by propylene conversion. Then, a mutual information-based variable selection method is proposed to select the key variables from multitudinous variables to reduce the influence of weak correlation. Finally, a T-S fuzzy neural network algorithm is employed to forecast the propylene conversion in the process of propylene oxidation. Simulation results show that the proposed soft sensor modelling method has better prediction accuracy and generalization ability. The method of this paper is obvious and effective.


Author(s):  
LINA WANG ◽  
JIANDONG WANG

Associating features with weights is a common approach in clustering algorithms and determining the weight values is crucial in generating valid partitions. In this paper, we introduce a novel method in the framework of granular computing that incorporates fuzzy sets, rough sets and shadowed sets, and calculates feature weights automatically. Experiments on synthetic and real data patterns show that our algorithms always converge and are more effective in handling overlapping among clusters and more robust in the presence of noisy data and outliers.


2012 ◽  
Vol 9 (1) ◽  
Author(s):  
Rok Blagus ◽  
Lara Lusa

The goal of multi-class supervised classification is to develop a rule that accurately predicts the class membership of new samples when the number of classes is larger than two. In this paper we consider high-dimensional class-imbalanced data: the number of variables greatly exceeds the number of samples and the number of samples in each class is not equal. We focus on Friedman's one-versus-one approach for three-class problems and show how its class probabilities depend on the class probabilities from the binary classification sub-problems. We further explore its performance using diagonal linear discriminant analysis (DLDA) as a base classifier and compare its performance with multi-class DLDA, using simulated and real data. Our results show that the class-imbalance has a significant effect on the classification results: the classification is biased towards the majority class as in the two-class problems and the problem is magnified when the number of variables is large. The amount of the bias depends also, jointly, on the magnitude of the differences between the classes and on the sample size: the bias diminishes when the difference between the classes is larger or the sample size is increased. Also variable selection plays an important role in the class-imbalance problem and the most effective strategy depends on the type of differences that exist between classes. DLDA seems to be among the least sensible classifiers to class-imbalance and its use is recommended also for multi-class problems. Whenever possible the experiments should be planned using balanced data in order to avoid the class-imbalance problem.


Sign in / Sign up

Export Citation Format

Share Document