scholarly journals Multi-Aspect SAR Target Recognition Based on Prototypical Network with a Small Number of Training Samples

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4333
Author(s):  
Pengfei Zhao ◽  
Lijia Huang ◽  
Yu Xin ◽  
Jiayi Guo ◽  
Zongxu Pan

At present, synthetic aperture radar (SAR) automatic target recognition (ATR) has been deeply researched and widely used in military and civilian fields. SAR images are very sensitive to the azimuth aspect of the imaging geomety; the same target at different aspects differs greatly. Thus, the multi-aspect SAR image sequence contains more information for classification and recognition, which requires the reliable and robust multi-aspect target recognition method. Nowadays, SAR target recognition methods are mostly based on deep learning. However, the SAR dataset is usually expensive to obtain, especially for a certain target. It is difficult to obtain enough samples for deep learning model training. This paper proposes a multi-aspect SAR target recognition method based on a prototypical network. Furthermore, methods such as multi-task learning and multi-level feature fusion are also introduced to enhance the recognition accuracy under the case of a small number of training samples. The experiments by using the MSTAR dataset have proven that the recognition accuracy of our method can be close to the accruacy level by all samples and our method can be applied to other feather extraction models to deal with small sample learning problems.

2020 ◽  
Author(s):  
dongshen ji ◽  
yanzhong zhao ◽  
zhujun zhang ◽  
qianchuan zhao

In view of the large demand for new coronary pneumonia covid19 image recognition samples,the recognition accuracy is not ideal.In this paper,a new coronary pneumonia positive image recognition method proposed based on small sample recognition. First, the CT image pictures are preprocessed, and the pictures are converted into the picture formats which are required for transfer learning. Secondly, perform small-sample image enhancement and expansion on the converted picture, such as miscut transformation, random rotation and translation, etc.. Then, multiple migration models are used to extract features and then perform feature fusion. Finally,the model is adjusted by fine-tuning.Then train the model to obtain experimental results. The experimental results show that our method has excellent recognition performance in the recognition of new coronary pneumonia images,even with only a small number of CT image samples.


2021 ◽  
Vol 271 ◽  
pp. 01039
Author(s):  
Dongsheng Ji ◽  
Yanzhong Zhao ◽  
Zhujun Zhang ◽  
Qianchuan Zhao

In view of the large demand for new coronary pneumonia covid19 image recognition samples, the recognition accuracy is not ideal. In this paper, a new coronary pneumonia positive image recognition method proposed based on small sample recognition. First, the CT image pictures are preprocessed, and the pictures are converted into the picture formats which are required for transfer learning. Secondly, small-sample image enhancement and extension are performed on the transformed image, such as staggered transformation, random rotation and translation, etc.. Then, multiple migration models are used to extract features and then perform feature fusion. Finally,the model is adjusted by fine-tuning. Then train the model to obtain experimental results. The experimental results show that our method has excellent recognition performance in the recognition of new coronary pneumonia images, even with only a small number of CT image samples.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Chunhe Song ◽  
Wenxiang Xu ◽  
Zhongfeng Wang ◽  
Shimao Yu ◽  
Peng Zeng ◽  
...  

Target recognition is one of the core tasks of transmission line inspection based on Unmanned Aerial Vehicle (UAV), and at present plenty of deep learning-based methods have been developed for it. To enhance the generalization ability of the recognition models, a huge number of training samples are needed to cover most of all possible situations. However, due to the complexity of the environmental conditions and targets, and the limitations of images’ collection and annotation, the samples usually are insufficient when training a deep learning model for target recognition, which is one of the main factors reducing the performance of the model. To overcome this issue, some data augmentation methods have been developed to generate additional samples for model training. Although these methods have been widely used, currently there is no quantitative study on the impact of the data augmentation methods on target recognition. In this paper, taking insulator strings as the target, the impact of a series of widely used data augmentation methods on the accuracy of target recognition is studied, including histogram equalization, Gaussian blur, random translation, scaling, cutout, and rotation. Extensive tests are carried out to verify the impact of the augmented samples in the training set, the test set, or the both. Experimental results show that data augmentation plays an important role in improving the accuracy of recognition models, in which the impacts of the data augmentation methods such as Gaussian blur, scaling, and rotation are significant.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jie Kang ◽  
Xiao Ying Chen ◽  
Qi Yuan Liu ◽  
Si Han Jin ◽  
Cheng Han Yang ◽  
...  

Microexpressions have extremely high due value in national security, public safety, medical, and other fields. However, microexpressions have characteristics that are obviously different from macroexpressions, such as short duration and weak changes, which greatly increase the difficulty of microexpression recognition work. In this paper, we propose a microexpression recognition method based on multimodal fusion through a comparative study of traditional microexpression recognition algorithms such as LBP algorithm and CNN and LSTM deep learning algorithms. The method couples the separate microexpression image information with the corresponding body temperature information to establish a multimodal fusion microexpression database. This paper firstly introduces how to build a multimodal fusion microexpression database in a laboratory environment, secondly compares the recognition accuracy of LBP, LSTM, and CNN + LSTM networks for microexpressions, and finally selects the superior CNN + LSTM network in the comparison results for model training and testing on the test set under separate microexpression database and multimodal fusion database. The experimental results show that a microexpression recognition method based on multimodal fusion designed in this paper is more accurate than unimodal recognition in multimodal recognition after feature fusion, and its recognition rate reaches 75.1%, which proves that the method is feasible and effective in improving microexpression recognition rate and has good practical value.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Zongyong Cui ◽  
Zongjie Cao ◽  
Jianyu Yang ◽  
Hongliang Ren

A hierarchical recognition system (HRS) based on constrained Deep Belief Network (DBN) is proposed for SAR Automatic Target Recognition (SAR ATR). As a classical Deep Learning method, DBN has shown great performance on data reconstruction, big data mining, and classification. However, few works have been carried out to solve small data problems (like SAR ATR) by Deep Learning method. In HRS, the deep structure and pattern classifier are combined to solve small data classification problems. After building the DBN with multiple Restricted Boltzmann Machines (RBMs), hierarchical features can be obtained, and then they are fed to classifier directly. To obtain more natural sparse feature representation, the Constrained RBM (CRBM) is proposed with solving a generalized optimization problem. Three RBM variants,L1-RNM,L2-RBM, andL1/2-RBM, are presented and introduced to HRS in this paper. The experiments on MSTAR public dataset show that the performance of the proposed HRS with CRBM outperforms current pattern recognition methods in SAR ATR, like PCA + SVM, LDA + SVM, and NMF + SVM.


Sign in / Sign up

Export Citation Format

Share Document