scholarly journals Virtual Electric Dipole Field Applied to Autonomous Formation Flight Control of Unmanned Aerial Vehicles

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4540
Author(s):  
Leszek Ambroziak ◽  
Maciej Ciężkowski

The following paper presents a method for the use of a virtual electric dipole potential field to control a leader-follower formation of autonomous Unmanned Aerial Vehicles (UAVs). The proposed control algorithm uses a virtual electric dipole potential field to determine the desired heading for a UAV follower. This method’s greatest advantage is the ability to rapidly change the potential field function depending on the position of the independent leader. Another advantage is that it ensures formation flight safety regardless of the positions of the initial leader or follower. Moreover, it is also possible to generate additional potential fields which guarantee obstacle and vehicle collision avoidance. The considered control system can easily be adapted to vehicles with different dynamics without the need to retune heading control channel gains and parameters. The paper closely describes and presents in detail the synthesis of the control algorithm based on vector fields obtained using scalar virtual electric dipole potential fields. The proposed control system was tested and its operation was verified through simulations. Generated potential fields as well as leader-follower flight parameters have been presented and thoroughly discussed within the paper. The obtained research results validate the effectiveness of this formation flight control method as well as prove that the described algorithm improves flight formation organization and helps ensure collision-free conditions.

2010 ◽  
Vol 20-23 ◽  
pp. 1528-1533
Author(s):  
Jin Jun Rao ◽  
Tong Yue Gao ◽  
Zhen Jiang ◽  
Zhen Bang Gong

The onboard software of the flight control system (FCS) plays important role for small unmanned aerial vehicles’ performance. In this paper, the characteristics difficulties of the FCS software are analyzed firstly, then the compositions of the software are introduced using HIPO method. A genetic architecture of onboard software is presented to coordinate and organize the software and function modules, and an unique task scheduling strategy is designed and applied to realize multi-task processing. Finally, on the basis of the elementary operation procedure of the software, the flight experiment is implemented, and the feasibility and reliability of the onboard software is validated.


2018 ◽  
Vol 23 (1) ◽  
pp. 88-98 ◽  
Author(s):  
Róbert Szabolcsi

Abstract Unmanned aerial vehicles are widely spread and intensively used ones both in governmental and in private applications. The standard arrangements of the commercial-off-the-shelves unmanned aerial vehicles sometimes neglect application of the automatic flight control system onboard. However, there are many initiatives to ensure autonomous flights of the unmanned aerial vehicles via pre-programmed flight paths. Moreover, automatic flight control system can ensure necessary level of the flight safety both in VFR and IFR flights. The aim of this study is to guide UAV users in set up commercial onboard autopilots available on the market. On the contrary, fitness of the autopilot to a given type of the air robot is not guaranteed, and, an extra load on users can appear in controller settings. The proposed pole placement technique is one of the proper methods eliminating difficulties, and, computer aided gain selection using MATLAB will be presented.


Sign in / Sign up

Export Citation Format

Share Document