scholarly journals Sensorless Speed Estimation for the Diagnosis of Induction Motors via MCSA. Review and Commercial Devices Analysis

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5037
Author(s):  
Jorge Bonet-Jara ◽  
Alfredo Quijano-Lopez ◽  
Daniel Morinigo-Sotelo ◽  
Joan Pons-Llinares

Sensorless speed estimation has been extensively studied for its use in control schemes. Nevertheless, it is also a key step when applying Motor Current Signature Analysis to induction motor diagnosis: accurate speed estimation is vital to locate fault harmonics, and prevent false positives and false negatives, as shown at the beginning of the paper through a real industrial case. Unfortunately, existing sensorless speed estimation techniques either do not provide enough precision for this purpose or have limited applicability. Currently, this is preventing Industry 4.0 from having a precise and automatic system to monitor the motor condition. Despite its importance, there is no research published reviewing this topic. To fill this gap, this paper investigates, from both theoretical background and an industrial application perspective, the reasons behind these problems. Therefore, the families of sensorless speed estimation techniques, mainly conceived for sensorless control, are here reviewed and thoroughly analyzed from the perspective of their use for diagnosis. Moreover, the algorithms implemented in the two leading commercial diagnostic devices are analyzed using real examples from a database of industrial measurements belonging to 79 induction motors. The analysis and discussion through the paper are synthesized to summarize the lacks and weaknesses of the industry application of these methods, which helps to highlight the open problems, challenges and research prospects, showing the direction in which research efforts have to be made to solve this important problem.

2021 ◽  
Vol 5 (1) ◽  
pp. PRESS
Author(s):  
Ramadoni Syahputra ◽  
Hedi Purwanto ◽  
Rama Okta Wiyagi ◽  
Muhamad Yusvin Mustar ◽  
Indah Soesanti

This paper discusses the analysis of the performance of an induction motor using the motor current signature analysis (MCSA) technique. Induction motor is a type of electric machine that is widely used in industry. One of the industries that utilize induction motors is a steam power plant (SPP). The role of induction motors is very vital in SPP operations. Therefore, it is necessary to monitor the performance, stability, and efficiency to anticipate disturbances that can cause damage or decrease the life of the induction motor. MCSA is a reliable technique that can be used to analyze damage to an induction motor. In this technique, the induction motor current signal is detected using a current transducer. The signal is then passed on to the signal conditioning and then into the data acquisition device. The important signal data is analyzed in adequate computer equipment. The results of this analysis determine the condition of the induction motor, whether it is normal or damaged. In this research, a case study was carried out at the Rembang steam power plant, Central Java, Indonesia. The results of the analysis of several induction motors show that most of them are in normal conditions and are still feasible to operate.


Machines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 6 ◽  
Author(s):  
Georgii D. Baranov ◽  
Erivelton G. Nepomuceno ◽  
Michail A. Vaganov ◽  
Valerii Y. Ostrovskii ◽  
Denis N. Butusov

The paper discusses the spectral markers of fault rotor bars in induction motor current signature analysis (MCSA). The results of the simulation of the deterioration process for a single rotor bar, as well as the results of research for various mutual bracing of two broken bars, are reported. We proposed a simple empiric technique allowing one to obtain frequencies for spectrum markers of damaged rotor bars based on simulation analysis. The set of frequencies obtained in the experimental part of the study was compared with simulation results and the results of real-life measurements. The theoretical results were verified through the experiment with the real induction motor under load. Analysis of experimental results proved that the given algorithm for spectrum analysis is suitable for early detection of fault rotor bars in induction motors.


Author(s):  
K. Vinoth Kumar ◽  
Prawin Angel Michael

This chapter deals with the diagnosis of induction motors (IM) with the so-called motor current signature analysis (MCSA). The MCSA is one of the most efficient techniques for the detection and the localization of electrical and mechanical failures, in which faults become apparent by harmonic components around the supply frequency. This chapter presents a summary of the most frequent faults and its consequences on the stator current spectrum of an IM. A three-phase IM model was used for simulation taking into account in one hand the normal healthy operation and in the other hand the broken rotor bars, the shorted turns in the stator windings, the voltage unbalance between phases of supply, and the abnormal behavior of load. The MCSA is used by many authors in literature for faults detection of IM. The major contribution of this work is to prove the efficiency of this diagnosis methodology to detect different faults simultaneously, in normal and abnormal functional conditions. The results illustrate good agreement between both simulated and experimental results.


Author(s):  
Adrian Georgescu ◽  
P. A. Simionescu

This paper presents the development, results and trainee perception of a laboratory experiment used for diagnosing the occurrence of different faults in impeller-pump induction motors by means of the Motor Current Signature Analysis (MCSA) technique. This is a quintessential experiment, relatively inexpensive and easy to implement, that combines elements of computerized data acquisition, Discrete Fourier Transform analysis and fault identification of electric motors. Following this laboratory exercise, students and trainees are able to understand and apply MCSA to determine common faults of induction motors. The test stand, experimental setup, and test procedure are described with sufficient details in the paper for others to build one of their own.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1469
Author(s):  
Tomas A. Garcia-Calva ◽  
Daniel Morinigo-Sotelo ◽  
Vanessa Fernandez-Cavero ◽  
Arturo Garcia-Perez ◽  
Rene de J. Romero-Troncoso

The fault diagnosis of electrical machines during startup transients has received increasing attention regarding the possibility of detecting faults early. Induction motors are no exception, and motor current signature analysis has become one of the most popular techniques for determining the condition of various motor components. However, in the case of inverter powered systems, the condition of a motor is difficult to determine from the stator current because fault signatures could overlap with other signatures produced by the inverter, low-slip operation, load oscillations, and other non-stationary conditions. This paper presents a speed signature analysis methodology for a reliable broken rotor bar diagnosis in inverter-fed induction motors. The proposed fault detection is based on tracking the speed fault signature in the time-frequency domain. As a result, different fault severity levels and load oscillations can be identified. The promising results show that this technique can be a good complement to the classic analysis of current signature analysis and reveals a high potential to overcome some of its drawbacks.


2020 ◽  
Vol 17 (1) ◽  
pp. 17-21
Author(s):  
Katalin Ágoston

AbstractThis paper presents fault detection techniques, especially the motor current signature analysis (MCSA) which consists of the phase current measurement of the electrical motor’s stator and/or rotor. The motor current signature analysis consists in determining the frequency spectrum (FFT) of the stator current signal and evaluating the relative amplitude of the current harmonics. Sideband frequencies appear in the frequency spectrum of the current, corresponding to each fault. The broken bar is a frequent fault in induction motors with squirrel-cage rotor. It is presented the equivalent circuit for induction motors and the equivalence between the squirrel-cage rotor and the rotor windings. It is also presented an equivalent circuit model for induction motors with squirrel cage rotor, and based on this a Simulink model was developed. It is shown how a broken rotor bar influences the magnetic field around the rotor and through this the stator current. This modification is highlighted through the developed model.


Sign in / Sign up

Export Citation Format

Share Document