scholarly journals LSTM and GRU Neural Networks as Models of Dynamical Processes Used in Predictive Control: A Comparison of Models Developed for Two Chemical Reactors

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5625
Author(s):  
Krzysztof Zarzycki ◽  
Maciej Ławryńczuk

This work thoroughly compares the efficiency of Long Short-Term Memory Networks (LSTMs) and Gated Recurrent Unit (GRU) neural networks as models of the dynamical processes used in Model Predictive Control (MPC). Two simulated industrial processes were considered: a polymerisation reactor and a neutralisation (pH) process. First, MPC prediction equations for both types of models were derived. Next, the efficiency of the LSTM and GRU models was compared for a number of model configurations. The influence of the order of dynamics and the number of neurons on the model accuracy was analysed. Finally, the efficiency of the considered models when used in MPC was assessed. The influence of the model structure on different control quality indicators and the calculation time was discussed. It was found that the GRU network, although it had a lower number of parameters than the LSTM one, may be successfully used in MPC without any significant deterioration of control quality.

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1223 ◽  
Author(s):  
Zhong Zheng ◽  
Xin Zhang ◽  
Jinxing Yu ◽  
Rui Guo ◽  
Lili Zhangzhong

In this paper, a comparative study of the effectiveness of deep neural networks (DNNs) in the classification of pure and impure purees is conducted. Three different types of deep neural networks (DNNs)—the Gated Recurrent Unit (GRU), the Long Short Term Memory (LSTM), and the temporal convolutional network (TCN)—are employed for the detection of adulteration of strawberry purees. The Strawberry dataset, a time series spectroscopy dataset from the UCR time series classification repository, is utilized to evaluate the performance of different DNNs. Experimental results demonstrate that the TCN is able to obtain a higher classification accuracy than the GRU and LSTM. Moreover, the TCN achieves a new state-of-the-art classification accuracy on the Strawberry dataset. These results indicates the great potential of using the TCN for the detection of adulteration of fruit purees in the future.


Sign in / Sign up

Export Citation Format

Share Document