scholarly journals Research on Energy Efficiency of NOMA–SWIPT Cooperative Relay Network Using GS-DinkelBach Algorithm

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5720
Author(s):  
Ninghao Zhou ◽  
Jinfeng Hu ◽  
Jia Hou

In order to improve the energy efficiency (EE) performance of cooperative networks, this study combines non-orthogonal multiple access (NOMA) with simultaneous wireless information and power transfer (SWIPT) technologies to construct a cooperative relay network composed of one base station (BS), multiple near users, and one far user. Based on the network characteristics, a time-division resource allocation rule is proposed, and EE formulas regarding direct-link mode and cooperative mode are derived. Considering user selection and decoding performance, to obtain the optimal EE, this study utilizes a DinkelBach iterative algorithm based on the golden section (GS-DinkelBach) to solve the EE optimization problem, which is affected by power transmitted from the BS, achievable rates under three communication links, and quality of service (QoS) constraints of users. The simulation results show that the GS-DinkelBach algorithm can obtain precise EE gains with low computational complexity. Compared with the traditional NOMA–SWIPT direct-link network model and the relay network model, the optimal EE of the established network model could be increased by 0.54 dB and 1.66 dB, respectively.

2018 ◽  
Vol 69 ◽  
pp. 628-641 ◽  
Author(s):  
Anand Gachhadar ◽  
MHD Nour Hindia ◽  
Faizan Qamar ◽  
M. Hassam Shakil Siddiqui ◽  
Kamarul Ariffin Noordin ◽  
...  

2021 ◽  
Author(s):  
Quy-Huu Tran ◽  
Ca V Phan ◽  
Quoc-Tuan Vien

Abstract This paper investigates a relay assisted simultaneous wireless information and power transfer (SWIPT) for downlink in cellular systems. Cooperative non-orthogonal multiple access (C-NOMA) is employed along with power splitting (PS) protocol to enable both energy harvesting (EH) and information processing (IP). A downlink model consists of a base station (BS) and two users is considered, in which the near user (NU) is selected as a relay to forward the received signal from the BS to the far user (FU). Maximum ratio combining is then employed at the FU to combine both the signals received from the BS and NU. Closed form expressions of outage propability (OP), throughput, ergodic rate and energy efficiency (EE) are firstly derived for the SWIPT based C-NOMA considering both scenarios of with and without direct link between the BS and FU. The impacts of EH time, EH efficiency, power-splitting ratio, source data rate and distance between different nodes on the performance are then investigated. The simulation results show that the C-NOMA with direct link achieves an outperformed performance over C-NOMA without direct link. Moreover, the performance of C-NOMA with direct link is also higher than that for OMA. Specifically, (i) the outage probability for C-NOMA in both direct and relaying link cases is always lower than that for OMA. (ii) the outage probability, throughput and ergodic rate vary according to β , (iii) the EE of both users can obtain in SNR range of from -10 to 5 dB and it decreases linearly as SNR increases. Numerical results are provided to verify the findings.


Sign in / Sign up

Export Citation Format

Share Document