scholarly journals Research on a Task Offloading Strategy for the Internet of Vehicles Based on Reinforcement Learning

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6058
Author(s):  
Shuo Xiao ◽  
Shengzhi Wang ◽  
Jiayu Zhuang ◽  
Tianyu Wang ◽  
Jiajia Liu

Today, vehicles are increasingly being connected to the Internet of Things, which enables them to obtain high-quality services. However, the numerous vehicular applications and time-varying network status make it challenging for onboard terminals to achieve efficient computing. Therefore, based on a three-stage model of local-edge clouds and reinforcement learning, we propose a task offloading algorithm for the Internet of Vehicles (IoV). First, we establish communication methods between vehicles and their cost functions. In addition, according to the real-time state of vehicles, we analyze their computing requirements and the price function. Finally, we propose an experience-driven offloading strategy based on multi-agent reinforcement learning. The simulation results show that the algorithm increases the probability of success for the task and achieves a balance between the task vehicle delay, expenditure, task vehicle utility and service vehicle utility under various constraints.

Author(s):  
Alessio Sacco ◽  
Flavio Esposito ◽  
Guido Marchetto ◽  
Paolo Montuschi

2018 ◽  
Vol 7 (3.12) ◽  
pp. 545
Author(s):  
Risabh Mishra ◽  
M Safa ◽  
Aditya Anand

Recent advances in wireless communication technologies and automobile industry have triggered a significant research interest in the field of Internet of Vehicles over the past few years.The advanced period of the Internet of Things is guiding the development of conventional Vehicular Networks to the Internet of Vehicles.In the days of Internet connectivity there is need to be in safe and problem-free environment.The Internet of Vehicles (IoV) is normally a mixing of three networks: an inter-vehicleNetwork, an intra-vehicle network, and a vehicle to vehicle network.Based on  idea of three networks combining into one, we define  Internet of Vehicles as a large-scale distributed system to wireless communication and information exchange between vehicle2X (X: vehicle, road, human and internet).It is a combined   network for supporting intelligent traffic management, intelligent dynamic information service, and intelligent vehicle control, representation of an application of the Internet of Things (IoT) technology for intelligent transportation system (ITS).  


Author(s):  
Bogdan Manațe ◽  
Florin Fortiş ◽  
Philip Moore

The rapid expansion of the Internet of Things (IoT) will generate a diverse range of data types that needs to be handled, processed and stored. This paper aims to create a multi-agent system that suits the needs introduced by the IoT expansion, thus being able to oversee the Big Data collection and processing and also to maintain the semantic links between the data sources and data consumers. In order to build a complex agent oriented architecture, we have assessed the existing agent oriented methodologies searching for the best solution that is not bound to a specific programming language of framework, and it is flexible enough to be applied in such a divers domain like IoT. As complex scenario, the proposed approach has been applied to medical diagnosis and motoring of mental disorders.


Author(s):  
Alex Mathew

There has been a rapid growth of the devices connected to the internet in the last decade for the various internet (IoT) of things applications. The increase of these smart devices has posed a great security concern in the internet of things ecosystem. The internet of things ecosystem must be protected from these threats. Reinforcement learning has been proposed by the cybersecurity professionals to provide the needed security tools for securing the IoT system since it is able to interact with the environment and learn how to detect the threats. This paper presents a comprehensive research on cybersecurity threats to the IoT system applications. The RL algorithms are also presented to understand the attacks on the IoT. Reinforcement learning is widely employed in cybersecurity because it can learn on its own experience by investigating and capitalizing on the unknown ecosystem, this enables it solve many complex problems. The RL capabilities on dealing with cybercrime challenges are also exploited in this paper.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shunzhi Fan

In order to improve the stability of the electrical control system, based on the Internet of Things technology, this paper constructs an online monitoring system for electrical control based on the Internet of Things. Based on actual needs, communication requirements, and common communication methods in the remote monitoring system, this paper combines the requirements of actual remote communication to conduct a detailed comparative analysis of the principles, performance characteristics, reliability, cost, maintenance, and other aspects of various communication methods, proposes a plan that can meet the communication requirements of the system, and completes the design of the wireless linear link communication network. In addition, according to the three-tier architecture of the Internet of Things, this paper comprehensively uses the technologies related to the Internet of Things to design and develop the perception layer, transmission layer, and application layer. Finally, this paper designs experiments to test the performance of the system constructed in this paper. The research results show that the online monitoring system based on the Internet of Things constructed in this paper meets the needs of intelligent monitoring of the electrical control system.


Sign in / Sign up

Export Citation Format

Share Document