scholarly journals Gaze Focalization System for Driving Applications Using OpenFace 2.0 Toolkit with NARMAX Algorithm in Accidental Scenarios

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6262
Author(s):  
Javier Araluce ◽  
Luis M. Bergasa ◽  
Manuel Ocaña ◽  
Elena López-Guillén ◽  
Pedro A. Revenga ◽  
...  

Monitoring driver attention using the gaze estimation is a typical approach used on road scenes. This indicator is of great importance for safe driving, specially on Level 3 and Level 4 automation systems, where the take over request control strategy could be based on the driver’s gaze estimation. Nowadays, gaze estimation techniques used in the state-of-the-art are intrusive and costly, and these two aspects are limiting the usage of these techniques on real vehicles. To test this kind of application, there are some databases focused on critical situations in simulation, but they do not show real accidents because of the complexity and the danger to record them. Within this context, this paper presents a low-cost and non-intrusive camera-based gaze mapping system integrating the open-source state-of-the-art OpenFace 2.0 Toolkit to visualize the driver focalization on a database composed of recorded real traffic scenes through a heat map using NARMAX (Nonlinear AutoRegressive Moving Average model with eXogenous inputs) to establish the correspondence between the OpenFace 2.0 parameters and the screen region the user is looking at. This proposal is an improvement of our previous work, which was based on a linear approximation using a projection matrix. The proposal has been validated using the recent and challenging public database DADA2000, which has 2000 video sequences with annotated driving scenarios based on real accidents. We compare our proposal with our previous one and with an expensive desktop-mounted eye-tracker, obtaining on par results. We proved that this method can be used to record driver attention databases.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1403
Author(s):  
Xin Jin ◽  
Xin Liu ◽  
Jinyun Guo ◽  
Yi Shen

Geocenter is the center of the mass of the Earth system including the solid Earth, ocean, and atmosphere. The time-varying characteristics of geocenter motion (GCM) reflect the redistribution of the Earth’s mass and the interaction between solid Earth and mass loading. Multi-channel singular spectrum analysis (MSSA) was introduced to analyze the GCM products determined from satellite laser ranging data released by the Center for Space Research through January 1993 to February 2017 for extracting the periods and the long-term trend of GCM. The results show that the GCM has obvious seasonal characteristics of the annual, semiannual, quasi-0.6-year, and quasi-1.5-year in the X, Y, and Z directions, the annual characteristics make great domination, and its amplitudes are 1.7, 2.8, and 4.4 mm, respectively. It also shows long-period terms of 6.09 years as well as the non-linear trends of 0.05, 0.04, and –0.10 mm/yr in the three directions, respectively. To obtain real-time GCM parameters, the MSSA method combining a linear model (LM) and autoregressive moving average model (ARMA) was applied to predict GCM for 2 years into the future. The precision of predictions made using the proposed model was evaluated by the root mean squared error (RMSE). The results show that the proposed method can effectively predict GCM parameters, and the prediction precision in the three directions is 1.53, 1.08, and 3.46 mm, respectively.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Xin Jin ◽  
Xin Liu ◽  
Jinyun Guo ◽  
Yi Shen

AbstractPolar motion is the movement of the Earth's rotational axis relative to its crust, reflecting the influence of the material exchange and mass redistribution of each layer of the Earth on the Earth's rotation axis. To better analyze the temporally varying characteristics of polar motion, multi-channel singular spectrum analysis (MSSA) was used to analyze the EOP 14 C04 series released by the International Earth Rotation and Reference System Service (IERS) from 1962 to 2020, and the amplitude of the Chandler wobbles were found to fluctuate between 20 and 200 mas and decrease significantly over the last 20 years. The amplitude of annual oscillation fluctuated between 60 and 120 mas, and the long-term trend was 3.72 mas/year, moving towards N56.79 °W. To improve prediction of polar motion, the MSSA method combining linear model and autoregressive moving average model was used to predict polar motion with ahead 1 year, repeatedly. Comparing to predictions of IERS Bulletin A, the results show that the proposed method can effectively predict polar motion, and the improvement rates of polar motion prediction for 365 days into the future were approximately 50% on average.


J ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 508-560
Author(s):  
Riccardo Corradini

Normally, econometric models that forecast the Italian Industrial Production Index do not exploit information already available at time t + 1 for their own main industry groupings. The new strategy proposed here uses state–space models and aggregates the estimates to obtain improved results. The performance of disaggregated models is compared at the same time with a popular benchmark model, a univariate model tailored on the whole index, with persistent not formally registered holidays, a vector autoregressive moving average model exploiting all information published on the web for main industry groupings. Tests for superior predictive ability confirm the supremacy of the aggregated forecasts over three steps horizon using absolute forecast error and quadratic forecast error as a loss function. The datasets are available online.


2013 ◽  
Vol 114 (10) ◽  
pp. 1406-1412 ◽  
Author(s):  
Angela S. M. Salinet ◽  
Thompson G. Robinson ◽  
Ronney B. Panerai

The association between neural activity and cerebral blood flow (CBF) has been used to assess neurovascular coupling (NVC) in health and diseases states, but little attention has been given to the contribution of simultaneous changes in peripheral covariates. We used an innovative approach to assess the contributions of arterial blood pressure (BP), PaCO2, and the stimulus itself to changes in CBF velocities (CBFv) during active (MA), passive (MP), and motor imagery (MI) paradigms. Continuous recordings of CBFv, beat-to-beat BP, heart rate, and breath-by-breath end-tidal CO2 (EtCO2) were performed in 17 right-handed subjects before, during, and after motor-cognitive paradigms performed with the right arm. A multivariate autoregressive-moving average model was used to calculate the separate contributions of BP, EtCO2, and the neural activation stimulus (represented by a metronome on-off signal) to the CBFv response during paradigms. Differences were found in the bilateral CBFv responses to MI compared with MA and MP, due to the contributions of stimulation ( P < 0.05). BP was the dominant contributor to the initial peaked CBFv response in all paradigms with no significant differences between paradigms, while the contribution of the stimulus explained the plateau phase and extended duration of the CBFv responses. Separating the neural activation contribution from the influences of other covariates, it was possible to detect differences between three paradigms often used to assess disease-related NVC. Apparently similar CBFv responses to different motor-cognitive paradigms can be misleading due to the contributions from peripheral covariates and could lead to inaccurate assessment of NVC, particularly during MI.


Sign in / Sign up

Export Citation Format

Share Document