scholarly journals Binary Neural Network for Automated Visual Surface Defect Detection

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6868
Author(s):  
Wenzhe Liu ◽  
Jiehua Zhang ◽  
Zhuo Su ◽  
Zhongzhu Zhou ◽  
Li Liu

As is well-known, defects precisely affect the lives and functions of the machines in which they occur, and even cause potentially catastrophic casualties. Therefore, quality assessment before mounting is an indispensable requirement for factories. Apart from the recognition accuracy, current networks suffer from excessive computing complexity, making it of great difficulty to deploy in the manufacturing process. To address these issues, this paper introduces binary networks into the area of surface defect detection for the first time, for the reason that binary networks prohibitively constrain weight and activation to +1 and −1. The proposed Bi-ShuffleNet and U-BiNet utilize binary convolution layers and activations in low bitwidth, in order to reach comparable performances while incurring much less computational cost. Extensive experiments are conducted on real-life NEU and Magnetic Tile datasets, revealing the least OPs required and little accuracy decline. When classifying the defects, Bi-ShuffleNet yields comparable results to counterpart networks, with at least 2× inference complexity reduction. Defect segmentation results indicate similar observations. Some network design rules in defect detection and binary networks are also summarized in this paper.

2021 ◽  
Vol 70 ◽  
pp. 1-13
Author(s):  
Lisha Cui ◽  
Xiaoheng Jiang ◽  
Mingliang Xu ◽  
Wanqing Li ◽  
Pei Lv ◽  
...  

2021 ◽  
pp. 1-18
Author(s):  
Hui Liu ◽  
Boxia He ◽  
Yong He ◽  
Xiaotian Tao

The existing seal ring surface defect detection methods for aerospace applications have the problems of low detection efficiency, strong specificity, large fine-grained classification errors, and unstable detection results. Considering these problems, a fine-grained seal ring surface defect detection algorithm for aerospace applications is proposed. Based on analysis of the stacking process of standard convolution, heat maps of original pixels in the receptive field participating in the convolution operation are quantified and generated. According to the generated heat map, the feature extraction optimization method of convolution combinations with different dilation rates is proposed, and an efficient convolution feature extraction network containing three kinds of dilated convolutions is designed. Combined with the O-ring surface defect features, a multiscale defect detection network is designed. Before the head of multiscale classification and position regression, feature fusion tree modules are added to ensure the reuse and compression of the responsive features of different receptive fields on the same scale feature maps. Experimental results show that on the O-rings-3000 testing dataset, the mean condition accuracy of the proposed algorithm reaches 95.10% for 5 types of surface defects of aerospace O-rings. Compared with RefineDet, the mean condition accuracy of the proposed algorithm is only reduced by 1.79%, while the parameters and FLOPs are reduced by 35.29% and 64.90%, respectively. Moreover, the proposed algorithm has good adaptability to image blur and light changes caused by the cutting of imaging hardware, thus saving the cost.


Sign in / Sign up

Export Citation Format

Share Document