scholarly journals Data-Driven Anomaly Detection in High-Voltage Transformer Bushings with LSTM Auto-Encoder

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7426
Author(s):  
Imene Mitiche ◽  
Tony McGrail ◽  
Philip Boreham ◽  
Alan Nesbitt ◽  
Gordon Morison

The reliability and health of bushings in high-voltage (HV) power transformers is essential in the power supply industry, as any unexpected failure can cause power outage leading to heavy financial losses. The challenge is to identify the point at which insulation deterioration puts the bushing at an unacceptable risk of failure. By monitoring relevant measurements we can trace any change that occurs and may indicate an anomaly in the equipment’s condition. In this work we propose a machine-learning-based method for real-time anomaly detection in current magnitude and phase angle from three bushing taps. The proposed method is fast, self-supervised and flexible. It consists of a Long Short-Term Memory Auto-Encoder (LSTMAE) network which learns the normal current and phase measurements of the bushing and detects any point when these measurements change based on the Mean Absolute Error (MAE) metric evaluation. This approach was successfully evaluated using real-world data measured from HV transformer bushings where anomalous events have been identified.

2013 ◽  
Vol 183 (1) ◽  
pp. 32-38
Author(s):  
Jun Izutsu ◽  
Satoru Nagata ◽  
Tadayuki Wada ◽  
Masahito Shimizu ◽  
Kenji Ohta

2020 ◽  
Vol 12 (8) ◽  
pp. 3177 ◽  
Author(s):  
Dimitrios Kontogiannis ◽  
Dimitrios Bargiotas ◽  
Aspassia Daskalopulu

Power forecasting is an integral part of the Demand Response design philosophy for power systems, enabling utility companies to understand the electricity consumption patterns of their customers and adjust price signals accordingly, in order to handle load demand more effectively. Since there is an increasing interest in real-time automation and more flexible Demand Response programs that monitor changes in the residential load profiles and reflect them according to changes in energy pricing schemes, high granularity time series forecasting is at the forefront of energy and artificial intelligence research, aimed at developing machine learning models that can produce accurate time series predictions. In this study we compared the baseline performance and structure of different types of neural networks on residential energy data by formulating a suitable supervised learning problem, based on real world data. After training and testing long short-term memory (LSTM) network variants, a convolutional neural network (CNN), and a multi-layer perceptron (MLP), we observed that the latter performed better on the given problem, yielding the lowest mean absolute error and achieving the fastest training time.


2008 ◽  
Vol 23 (2) ◽  
pp. 993-1002 ◽  
Author(s):  
Nandor Burany ◽  
Laszlo Huber ◽  
Predrag Pejovic

Sign in / Sign up

Export Citation Format

Share Document