scholarly journals A Decentralized Sensor Fusion Scheme for Multi Sensorial Fault Resilient Pose Estimation

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8259
Author(s):  
Moumita Mukherjee ◽  
Avijit Banerjee ◽  
Andreas Papadimitriou ◽  
Sina Sharif Mansouri ◽  
George Nikolakopoulos

This article proposes a novel decentralized two-layered and multi-sensorial based fusion architecture for establishing a novel resilient pose estimation scheme. As it will be presented, the first layer of the fusion architecture considers a set of distributed nodes. All the possible combinations of pose information, appearing from different sensors, are integrated to acquire various possibilities of estimated pose obtained by involving multiple extended Kalman filters. Based on the estimated poses, obtained from the first layer, a Fault Resilient Optimal Information Fusion (FR-OIF) paradigm is introduced in the second layer to provide a trusted pose estimation. The second layer incorporates the output of each node (constructed in the first layer) in a weighted linear combination form, while explicitly accounting for the maximum likelihood fusion criterion. Moreover, in the case of inaccurate measurements, the proposed FR-OIF formulation enables a self resiliency by embedding a built-in fault isolation mechanism. Additionally, the FR-OIF scheme is also able to address accurate localization in the presence of sensor failures or erroneous measurements. To demonstrate the effectiveness of the proposed fusion architecture, extensive experimental studies have been conducted with a micro aerial vehicle, equipped with various onboard pose sensors, such as a 3D lidar, a real-sense camera, an ultra wide band node, and an IMU. The efficiency of the proposed novel framework is extensively evaluated through multiple experimental results, while its superiority is also demonstrated through a comparison with the classical multi-sensorial centralized fusion approach.

Author(s):  
Hanieh Deilamsalehy ◽  
Timothy C. Havens ◽  
Joshua Manela

Precise, robust, and consistent localization is an important subject in many areas of science such as vision-based control, path planning, and simultaneous localization and mapping (SLAM). To estimate the pose of a platform, sensors such as inertial measurement units (IMUs), global positioning system (GPS), and cameras are commonly employed. Each of these sensors has their strengths and weaknesses. Sensor fusion is a known approach that combines the data measured by different sensors to achieve a more accurate or complete pose estimation and to cope with sensor outages. In this paper, a three-dimensional (3D) pose estimation algorithm is presented for a unmanned aerial vehicle (UAV) in an unknown GPS-denied environment. A UAV can be fully localized by three position coordinates and three orientation angles. The proposed algorithm fuses the data from an IMU, a camera, and a two-dimensional (2D) light detection and ranging (LiDAR) using extended Kalman filter (EKF) to achieve accurate localization. Among the employed sensors, LiDAR has not received proper attention in the past; mostly because a two-dimensional (2D) LiDAR can only provide pose estimation in its scanning plane, and thus, it cannot obtain a full pose estimation in a 3D environment. A novel method is introduced in this paper that employs a 2D LiDAR to improve the full 3D pose estimation accuracy acquired from an IMU and a camera, and it is shown that this method can significantly improve the precision of the localization algorithm. The proposed approach is evaluated and justified by simulation and real world experiments.


Author(s):  
Zhenni Wu ◽  
Hengxin Chen ◽  
Bin Fang ◽  
Zihao Li ◽  
Xinrun Chen

With the rapid development of computer technology, building pose estimation combined with Augmented Reality (AR) can play a crucial role in the field of urban planning and architectural design. For example, a virtual building model can be placed into a realistic scenario acquired by a Unmanned Aerial Vehicle (UAV) to visually observe whether the building can integrate well with its surroundings, thus optimizing the design of the building. In the work, we contribute a building dataset for pose estimation named BD3D. To obtain accurate building pose, we use a physical camera which can simulate realistic cameras in Unity3D to simulate UAVs perspective and use virtual building models as objects. We propose a novel neural network that combines MultiBin module with PoseNet architecture to estimate the building pose. Sometimes, the building is symmetry and ambiguity causes its different surfaces to have similar features, making it difficult for CNNs to learn the differential features between the different surfaces. We propose a generalized world coordinate system repositioning strategy to deal with it. We evaluate our network with the strategy on BD3D, and the angle error is reduced to [Formula: see text] from [Formula: see text]. Code and dataset have been made available at: https://github.com/JellyFive/Building-pose-estimation-from-the-perspective-of-UAVs-based-on-CNNs .


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Gang Yan ◽  
Jianfei Tang

This paper presents a Bayesian approach for localizing acoustic emission (AE) source in plate-like structures with consideration of uncertainties from modeling error and measurement noise. A PZT sensor network is deployed to monitor and acquire AE wave signals released by possible damage. By using continuous wavelet transform (CWT), the time-of-flight (TOF) information of the AE wave signals is extracted and measured. With a theoretical TOF model, a Bayesian parameter identification procedure is developed to obtain the AE source location and the wave velocity at a specific frequency simultaneously and meanwhile quantify their uncertainties. It is based on Bayes’ theorem that the posterior distributions of the parameters about the AE source location and the wave velocity are obtained by relating their priors and the likelihood of the measured time difference data. A Markov chain Monte Carlo (MCMC) algorithm is employed to draw samples to approximate the posteriors. Also, a data fusion scheme is performed to fuse results identified at multiple frequencies to increase accuracy and reduce uncertainty of the final localization results. Experimental studies on a stiffened aluminum panel with simulated AE events by pensile lead breaks (PLBs) are conducted to validate the proposed Bayesian AE source localization approach.


2012 ◽  
Vol 21 (01) ◽  
pp. 1250014
Author(s):  
KRISHNA PENTAKOTA ◽  
MARIO A. RAMIREZ ◽  
SEBASTIAN HOYOS

This paper presents a data estimation scheme for wide band multichannel charge sampling filter bank receivers together with a complete system calibration algorithm based on the least mean squared (LMS) algorithm. A unified model has been defined for the receiver containing all first order mismatches, offsets, imperfections, and the LMS algorithm is employed to track these errors. The performance of this technique under noisy channel conditions has been verified. Moreover, a detailed complexity analysis of the calibration algorithm is provided which shows that sinc filter banks have much lower complexity than traditional continuous-time filter banks.


2004 ◽  
Vol 813 ◽  
Author(s):  
M.D. Mccluskey ◽  
S.J. Jokela

ABSTRACTZinc oxide (ZnO) has shown great promise as a wide band gap semiconductor with optical, electronic, and mechanical applications. Recent first-principles calculations and experimental studies have shown that hydrogen acts as a shallow donor in ZnO, in contrast to hydrogen's usual role as a passivating impurity. The structures of such hydrogen complexes, however, have not been determined. To address this question, we performed vibrational spectroscopy on bulk, single-crystal ZnO samples annealed in hydrogen (H2) or deuterium (D2) gas. Using infrared (IR) spectroscopy, we have observed O-H and O-D stretch modes at 3326.3 cm−1 and 2470.3 cm−1 respectively, at a sample temperature of 14 K. These frequencies are in good agreement with the theoretical predictions for hydrogen and deuterium in an antibonding configuration, although the bond-centered configuration cannot be ruled out. The IR-active hydrogen complexes are unstable, however, with a dissocation barrier on the order of 1 eV.


Robotics ◽  
2017 ◽  
Vol 6 (2) ◽  
pp. 6 ◽  
Author(s):  
Haiwen Yuan ◽  
Changshi Xiao ◽  
Supu Xiu ◽  
Yuanqiao Wen ◽  
Chunhui Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document