world coordinate system
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 10)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
M. J. Sani ◽  
I. A. Musliman ◽  
A. Abdul Rahman

Abstract. Geographic information system (GIS) is known traditionally for the modelling of two-dimensional (2D) geospatial analysis and therefore present information about the extensive spatial framework. On the other hand, building information modelling (BIM) is digital representation of building life cycle. The increasing use of both BIM and GIS simultaneously because of their mutual relationship, as well as their similarities, has resulted in more relationships between both worlds, therefore the need for their integration. A significant purpose of these similarities is importing BIM data into GIS to significantly assist in different design-related issues. However, currently this is challenging due to the diversity between the two worlds which includes diversity in coordinate systems, three-dimensional (3D) geometry representation, and semantic mismatch. This paper describes an algorithm for the conversion of IFC data to CityGML in order to achieve the set goal of sharing information between BIM and GIS domains. The implementation of the programme developed using python was validated using an IFC model (block HO2) of a student’s hostel, Kolej Tun Fatima (KTF). The conversion is based on geometric and semantic information mapping and the use of 3D affine transformation of IFC data from local coordinate system (LCS) to CityGML world coordinate system (WCS) (EPSG:4236). In order to bridge the gap between the two data exchange formats of BIM and GIS, we conducted geometry and semantic mapping. In this paper, we limited the conversion of the IFC model on level of details 2 (LOD2). The conversion will serve as a bridge toward the development of a software that will perform the conversion to create a strong synergy between the two domains for purpose of sharing information.


2021 ◽  
Vol 11 (23) ◽  
pp. 11340
Author(s):  
Zhiguo Lu ◽  
Guangda He ◽  
Ruchao Wang ◽  
Shixiong Wang ◽  
Yichen Zhang ◽  
...  

This paper introduces a planar positioning sensing system based on orthogonal wheels and encoders for some surfaces that may float (such as ship decks). The positioning sensing system can obtain the desired position and angle information on any such ground that floats. In view of the current method of using the IMU gyroscope for positioning, the odometer data on these floating grounds are not consistent with the real-time data in the world coordinate system. The system takes advantage of the characteristic of the orthogonal wheel, using four vertical omnidirectional wheels and encoders to position on the floating ground. We design a new structure and obtain the position and angle information of a mobile robot by solving the encoder installed on four sets of omnidirectional wheels. Each orthogonal wheel is provided with a sliding mechanism. This is a good solution to the problem of irregular motion of the system facing the floating grounds. In the experiment, it is found that under the condition that the parameters of the four omnidirectional wheels are obtained by the encoder, the influence of the angle change of the robot in the world coordinate system caused by the flotation of the ground can be ignored, and the position and pose of the robot on the fluctuating ground can be well obtained. Regardless of straight or curved motion, the error can reach the centimeter level. In the mobile floating platform experiment, the maximum error of irregular movement process is 2.43 (±0.075) cm and the RMSE is 1.51 cm.


Author(s):  
Nikolay N. Kozhevnikov ◽  
◽  
Vera S. Danilova

Three fundamental provisions are introduced here, which lay the basis for studying the ontological structures of modern education: 1) education is what remains when everything that has been learned is forgotten; 2) education is achieved through independent work, while what they can teach one in schools and universities only helps to get it; 3) a well-oiled infrastructure of the cognition process is needed, i.e. auxiliary areas and resources for the formation of the structures under consideration. These provisions are investigated in the context of the concept of dynamic limit equilibria and the world coordinate system based on it. Of the four concepts of consciousness singled out by V.A. Lektorsky, the paper used the first two: identifying consciousness with knowledge and considering intentionality (focus on a certain object) as the main sign of consciousness. When re-assembling knowledge, two main trends are possible: 1) purification, which presupposes discarding of all that is superfluous (it can have to do with the degradation of the subject, his or her reorientation to completely new knowledge, or the need to prepare memory for perceiving more knowledge); 2) self-organization of the acquired knowledge, which is at the cutting edge of contemporary research. The latter trend has several important features. From the point of view of dynamic limit equilibria, knowledge tends to close itself into a stable optimal system, pushing everything unnecessary and secondary to the periphery. Moreover, in the process of self-organization knowledge gravitates towards increasingly accurate identifications that clarify the connections between its key elements. Further, the paper dwells on the characteristics of three main components of the classical educational-hermeneutic triangle teacher–text–student and their interaction with each other. In addition, the hermeneutic circles of teaching methodology are analysed: 1) preparation–teaching–perception; 2) course and its parts, course and its context. Cognitive structures and objects of consciousness, as well as catalyzation and self-organization of educational activity are also considered in the paper.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1401
Author(s):  
Siyuan Fang ◽  
Xiaowan Zheng ◽  
Gang Zheng ◽  
Boyang Zhang ◽  
Bicheng Guo ◽  
...  

More and more attention has been given in the field of mechanical engineering to a material’s R-value, a parameter that characterizes the ability of sheet metal to resist thickness strain. Conventional methods used to determine R-value are based on experiments and an assumption of constant volume. Because the thickness strain cannot be directly measured, the R-value is currently determined using experimentally measured strains in the width, and loading directions in combination with the constant volume assumption, to determine the thickness strain indirectly. This paper provides an alternative method for determining the R-value without any assumptions. This method is based on the use of a multi-camera DIC system to measure strains in three directions simultaneously. Two sets of stereo-vision DIC measurement systems, each comprised of two GigE cameras, are placed on the front and back sides of the sample. Use of the double-sided calibration strategy unifies the world coordinate system of the front and back DIC measurement systems to one coordinate system, allowing for the measurement of thickness strain and direct calculation of R-value. The Random Sample Consensus (RANSAC) algorithm is used to eliminate noise in the thickness strain data, resulting in a more accurate R-value measurement.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2265
Author(s):  
Jung Hyun Lee ◽  
Dong-Wook Lee

An around view monitoring (AVM) system acquires the front, rear, left, and right-side information of a vehicle using four cameras and transforms the four images into one image coordinate system to monitor around the vehicle with one image. Conventional AVM calibration utilizes the maximum likelihood estimation (MLE) to determine the parameters that can transform the captured four images into one AVM image. The MLE requires reference data of the image coordinate system and the world coordinate system to estimate these parameters. In conventional AVM calibration, many aligned calibration boards are placed around the vehicle and are measured to extract the reference sample data. However, accurately placing and measuring the calibration boards around a vehicle is an exhaustive procedure. To remediate this problem, we propose a novel AVM calibration method that requires only four randomly placed calibration boards by estimating the location of each calibration board. First, we define the AVM errors and determine the parameters that minimize the error in estimating the location. We then evaluate the accuracy of the proposed method through experiments using a real-sized vehicle and an electric vehicle for children to show that the proposed method can generate an AVM image similar to the conventional AVM calibration method regardless of a vehicle’s size.


Author(s):  
Zhenni Wu ◽  
Hengxin Chen ◽  
Bin Fang ◽  
Zihao Li ◽  
Xinrun Chen

With the rapid development of computer technology, building pose estimation combined with Augmented Reality (AR) can play a crucial role in the field of urban planning and architectural design. For example, a virtual building model can be placed into a realistic scenario acquired by a Unmanned Aerial Vehicle (UAV) to visually observe whether the building can integrate well with its surroundings, thus optimizing the design of the building. In the work, we contribute a building dataset for pose estimation named BD3D. To obtain accurate building pose, we use a physical camera which can simulate realistic cameras in Unity3D to simulate UAVs perspective and use virtual building models as objects. We propose a novel neural network that combines MultiBin module with PoseNet architecture to estimate the building pose. Sometimes, the building is symmetry and ambiguity causes its different surfaces to have similar features, making it difficult for CNNs to learn the differential features between the different surfaces. We propose a generalized world coordinate system repositioning strategy to deal with it. We evaluate our network with the strategy on BD3D, and the angle error is reduced to [Formula: see text] from [Formula: see text]. Code and dataset have been made available at: https://github.com/JellyFive/Building-pose-estimation-from-the-perspective-of-UAVs-based-on-CNNs .


2021 ◽  
Vol 11 (2) ◽  
pp. 582
Author(s):  
Zean Bu ◽  
Changku Sun ◽  
Peng Wang ◽  
Hang Dong

Calibration between multiple sensors is a fundamental procedure for data fusion. To address the problems of large errors and tedious operation, we present a novel method to conduct the calibration between light detection and ranging (LiDAR) and camera. We invent a calibration target, which is an arbitrary triangular pyramid with three chessboard patterns on its three planes. The target contains both 3D information and 2D information, which can be utilized to obtain intrinsic parameters of the camera and extrinsic parameters of the system. In the proposed method, the world coordinate system is established through the triangular pyramid. We extract the equations of triangular pyramid planes to find the relative transformation between two sensors. One capture of camera and LiDAR is sufficient for calibration, and errors are reduced by minimizing the distance between points and planes. Furthermore, the accuracy can be increased by more captures. We carried out experiments on simulated data with varying degrees of noise and numbers of frames. Finally, the calibration results were verified by real data through incremental validation and analyzing the root mean square error (RMSE), demonstrating that our calibration method is robust and provides state-of-the-art performance.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5547 ◽  
Author(s):  
Zuoxi Zhao ◽  
Yuchang Zhu ◽  
Yuanhong Li ◽  
Zhi Qiu ◽  
Yangfan Luo ◽  
...  

The measurement of six-degrees-of-freedom (6-DOF) of rigid bodies plays an important role in many industries, but it often requires the use of professional instruments and software, or has limitations on the shape of measured objects. In this paper, a 6-DOF measurement method based on multi-camera is proposed, which is accomplished using at least two ordinary cameras and is made available for most morphological rigid bodies. First, multi-camera calibration based on Zhang Zhengyou’s calibration method is introduced. In addition to the intrinsic and extrinsic parameters of cameras, the pose relationship between the camera coordinate system and the world coordinate system can also be obtained. Secondly, the 6-DOF calculation model of proposed method is gradually analyzed by the matrix analysis method. With the help of control points arranged on the rigid body, the 6-DOF of the rigid body can be calculated by the least square method. Finally, the Phantom 3D high-speed photogrammetry system (P3HPS) with an accuracy of 0.1 mm/m was used to evaluate this method. The experiment results show that the average error of the rotational degrees of freedom (DOF) measurement is less than 1.1 deg, and the average error of the movement DOF measurement is less than 0.007 m. In conclusion, the accuracy of the proposed method meets the requirements.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 772
Author(s):  
Meiying Li ◽  
Jin Liu ◽  
Haima Yang ◽  
Wanqing Song ◽  
Zihao Yu

Calibration is a critical step in structured light 3D imaging systems. However, in the traditional calibration process, since the calibration plate is based on a two-dimensional model, the flatness of the calibration plate and the angle of the photo will affect the subsequent stitching steps based on the feature points. The number of photos also affects the calibration results. To improve the calibration accuracy, multiple photos need to be taken. The primary objective of this study was to achieve the simple and fast calibration of system parameters, so a method obtaining a large number of calibration data by homography matrix is presented, and a corresponding stereo target is designed in symmetry. First, using the relationship between the corner coordinates of the left and right parts of the stereo calibration plate and the coordinates of the world coordinate system, the homography matrix of the left and right calibration plates from the image coordinates to the world coordinates is calculated. Second, all the pixels in the stereo calibration plate are matched to the world coordinate system by using the homography matrix. In addition, we also compared the results of this method with those of traditional calibration methods. The experimental results show that the 3D geometric surface of the reconstruction result is smooth, it avoids the missing parts and the visual effect is excellent. Furthermore, the error range of small and complex objects can be reduced to 0.03 mm~0.05 mm. This method simplifies the calibration steps, reduces the calibration costs and has practical application value.


2019 ◽  
Vol 36 (6) ◽  
pp. 2066-2083 ◽  
Author(s):  
Xiaohong Lu ◽  
Yongquan Wang ◽  
Jie Li ◽  
Yang Zhou ◽  
Zongjin Ren ◽  
...  

Purpose The purpose of this paper is to solve the problem that the analytic solution model of spatial three-dimensional coordinate measuring system based on dual-position sensitive detector (PSD) is complex and its precision is not high. Design/methodology/approach A new three-dimensional coordinate measurement algorithm by optimizing back propagation (BP) neural network based on genetic algorithm (GA) is proposed. The mapping relation between three-dimensional coordinates of space points in the world coordinate system and light spot coordinates formed on dual-PSD has been built and applied to the prediction of three-dimensional coordinates of space points. Findings The average measurement error of three-dimensional coordinates of space points at three-dimensional coordinate measuring system based on dual-PSD based on GA-BP neural network is relatively small. This method does not require considering the lens distortion and the non-linearity of PSD. It has simple structure and high precision and is suitable for three-dimensional coordinate measurement of space points. Originality/value A new three-dimensional coordinate measurement algorithm by optimizing BP neural network based on GA is proposed to predict three-dimensional coordinates of space points formed on three-dimensional coordinate measuring system based on dual-PSD.


Sign in / Sign up

Export Citation Format

Share Document