scholarly journals Object-based Land Cover Classification and Change Analysis in the Baltimore Metropolitan Area Using Multitemporal High Resolution Remote Sensing Data

Sensors ◽  
2008 ◽  
Vol 8 (3) ◽  
pp. 1613-1636 ◽  
Author(s):  
Weiqi Zhou ◽  
Austin Troy ◽  
Morgan Grove
2022 ◽  
pp. 20-41
Author(s):  
Rubeena Vohra ◽  
Kailash Chandra Tiwari

The goal of this chapter is to demonstrate the classification of natural and man-made objects from multisensory remote sensing data. The spectral and spatial features play an important role in extracting the information of natural and man-made objects. The classification accuracy may be enhanced by fusion technique applied on feature knowledge database. A significantly different approach has been devised using spatial as well as spectral features from multisensory data, and the classified results are enhanced by majority voting fusion technique. The author concludes by presenting extensive discussion at each level and has envisaged the potential use of multisensory data for object-based land cover classification.


2020 ◽  
Vol 12 (3) ◽  
pp. 417 ◽  
Author(s):  
Xin Zhang ◽  
Liangxiu Han ◽  
Lianghao Han ◽  
Liang Zhu

Land cover information plays an important role in mapping ecological and environmental changes in Earth’s diverse landscapes for ecosystem monitoring. Remote sensing data have been widely used for the study of land cover, enabling efficient mapping of changes of the Earth surface from Space. Although the availability of high-resolution remote sensing imagery increases significantly every year, traditional land cover analysis approaches based on pixel and object levels are not optimal. Recent advancement in deep learning has achieved remarkable success on image recognition field and has shown potential in high spatial resolution remote sensing applications, including classification and object detection. In this paper, a comprehensive review on land cover classification and object detection approaches using high resolution imagery is provided. Through two case studies, we demonstrated the applications of the state-of-the-art deep learning models to high spatial resolution remote sensing data for land cover classification and object detection and evaluated their performances against traditional approaches. For a land cover classification task, the deep-learning-based methods provide an end-to-end solution by using both spatial and spectral information. They have shown better performance than the traditional pixel-based method, especially for the categories of different vegetation. For an objective detection task, the deep-learning-based object detection method achieved more than 98% accuracy in a large area; its high accuracy and efficiency could relieve the burden of the traditional, labour-intensive method. However, considering the diversity of remote sensing data, more training datasets are required in order to improve the generalisation and the robustness of deep learning-based models.


2021 ◽  
Vol 13 (21) ◽  
pp. 4483
Author(s):  
W. Gareth Rees ◽  
Jack Tomaney ◽  
Olga Tutubalina ◽  
Vasily Zharko ◽  
Sergey Bartalev

Growing stock volume (GSV) is a fundamental parameter of forests, closely related to the above-ground biomass and hence to carbon storage. Estimation of GSV at regional to global scales depends on the use of satellite remote sensing data, although accuracies are generally lower over the sparse boreal forest. This is especially true of boreal forest in Russia, for which knowledge of GSV is currently poor despite its global importance. Here we develop a new empirical method in which the primary remote sensing data source is a single summer Sentinel-2 MSI image, augmented by land-cover classification based on the same MSI image trained using MODIS-derived data. In our work the method is calibrated and validated using an extensive set of field measurements from two contrasting regions of the Russian arctic. Results show that GSV can be estimated with an RMS uncertainty of approximately 35–55%, comparable to other spaceborne estimates of low-GSV forest areas, with 70% spatial correspondence between our GSV maps and existing products derived from MODIS data. Our empirical approach requires somewhat laborious data collection when used for upscaling from field data, but could also be used to downscale global data.


Sign in / Sign up

Export Citation Format

Share Document