scholarly journals Automatic Detection of Dynamic and Static Activities of the Older Adults Using a Wearable Sensor and Support Vector Machines

Sci ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 62
Author(s):  
Jian Zhang ◽  
Rahul Soangra ◽  
Thurmon E. Lockhart

Although Support Vector Machines (SVM) are widely used for classifying human motion patterns, their application in the automatic recognition of dynamic and static activities of daily life in the healthy older adults is limited. Using a body mounted wireless inertial measurement unit (IMU), this paper explores the use of SVM approach for classifying dynamic (walking) and static (sitting, standing and lying) activities of the older adults. Specifically, data formatting and feature extraction methods associated with IMU signals are discussed. To evaluate the performance of the SVM algorithm, the effects of two parameters involved in SVM algorithm—the soft margin constant C and the kernel function parameter γ—are investigated. The changes associated with adding white-noise and pink-noise on these two parameters along with adding different sources of movement variations (i.e., localized muscle fatigue and mixed activities) are further discussed. The results indicate that the SVM algorithm is capable of keeping high overall accuracy by adjusting the two parameters for dynamic as well as static activities, and may be applied as a tool for automatically identifying dynamic and static activities of daily life in the older adults.

Sci ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 60
Author(s):  
Jian Zhang ◽  
Rahul Soangra ◽  
Thurmon E. Lockhart

Although Support Vector Machines (SVM) are widely used for classifying human motion patterns, their application in the automatic recognition of dynamic and static activities of daily life in the healthy older adults is limited. Using a body mounted wireless inertial measurement unit (IMU), this paper explores the use of SVM approach for classifying dynamic (walking) and static (sitting, standing and lying) activities of the older adults. Specifically, data formatting and feature extraction methods associated with IMU signals are discussed. To evaluate the performance of the SVM algorithm, the effects of two parameters involved in SVM algorithm—the soft margin constant C and the kernel function parameter γ—are investigated. The changes associated with adding white-noise and pink-noise on these two parameters along with adding different sources of movement variations (i.e., localized muscle fatigue and mixed activities) are further discussed. The results indicate that the SVM algorithm is capable of keeping high overall accuracy by adjusting the two parameters for dynamic as well as static activities, and may be applied as a tool for automatically identifying dynamic and static activities of daily life in the older adults.


Sci ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 50
Author(s):  
Jian Zhang ◽  
Rahul Soangra ◽  
Thurmon E. Lockhart

Although Support Vector Machines (SVM) are widely used for classifying human motion patterns, their application in the automatic recognition of dynamic and static activities of daily life in the healthy older adults is limited. Using a body mounted wireless inertial measurement unit (IMU), this paper explores the use of an SVM approach for classifying dynamic (walking) and static (sitting, standing and lying) activities of the older adults. Specifically, data formatting and feature extraction methods associated with IMU signals are discussed. To evaluate the performance of the SVM algorithm, the effects of two parameters involved in SVM algorithm—the soft margin constant C and the kernel function parameter γ —are investigated. The changes associated with adding white-noise and pink-noise on these two parameters along with adding different sources of movement variations (i.e., localized muscle fatigue and mixed activities) are further discussed. The results indicate that the SVM algorithm is capable of keeping high overall accuracy by adjusting the two parameters for dynamic as well as static activities, and may be applied as a tool for automatically identifying dynamic and static activities of daily life in the older adults.


Sci ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 38
Author(s):  
Jian Zhang ◽  
Rahul Soangra ◽  
Thurmon E. E. Lockhart

Although Support Vector Machines (SVM) are widely used for classifying human motion patterns, their application in the automatic recognition of dynamic and static activities of daily life in the elderly is limited. Using a body mounted wireless inertial measurement unit (IMU), this paper explores the use of an SVM approach for classifying dynamic (walking) and static (sitting, standing and lying) activities of the elderly. Specifically, data formatting and feature extraction methods associated with IMU signals are discussed. To evaluate the performance of the SVM algorithm, the effects of two parameters involved in SVM algorithm—the soft margin constant C and the kernel function parameter —are investigated. The changes associated with adding white-noise and pink-noise on these two parameters along with adding different sources of movement variations (i.e., localized muscle fatigue and mixed activities) are further discussed. The results indicate that the SVM algorithm is capable of keeping high overall accuracy by adjusting the two parameters for dynamic as well as static activities, and may be applied as a tool for automatically identifying static and dynamic activities of daily life in the elderly.


2015 ◽  
Vol 3 (3) ◽  
pp. 279-288 ◽  
Author(s):  
Aijun Yan ◽  
Xiaoqian Huang ◽  
Hongshan Shao

AbstractCompared with standard support vector machines (SVM), sparseness is lost in the modeling process of least squares support vector machines (LS-SVM), causing limited generalization capability. An improved method using quadratic renyi-entropy pruning is presented to deal with the above problems. First, a kernel principal component analysis (KPCA) is used to denoise the training data. Next, the authors use the genetic algorithm to estimate and optimize the kernel function parameter and penalty factor. Then, pick the subset that has the largest quadratic entropy to train and prune, and repeat this process until the cumulative error rate reaches the condition requirement. Finally, comparing experiments on the data classification and regression indicates that the proposed method is effective and may improve the sparseness and the generalization capability of LS-SVM model.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4681 ◽  
Author(s):  
Hao Yan ◽  
Hongbo Wang ◽  
Luige Vladareanu ◽  
Musong Lin ◽  
Victor Vladareanu ◽  
...  

In the process of rehabilitation training for stroke patients, the rehabilitation effect is positively affected by how much physical activity the patients take part in. Most of the signals used to measure the patients’ participation are EMG signals or oxygen consumption, which increase the cost and the complexity of the robotic device. In this work, we design a multi-sensor system robot with torque and six-dimensional force sensors to gauge the patients’ participation in training. By establishing the static equation of the mechanical leg, the man–machine interaction force of the patient can be accurately extracted. Using the impedance model, the auxiliary force training mode is established, and the difficulty of the target task is changed by adjusting the K value of auxiliary force. Participation models with three intensities were developed offline using support vector machines, for which the C and σ parameters are optimized by the hybrid quantum particle swarm optimization and support vector machines (Hybrid QPSO-SVM) algorithm. An experimental statistical analysis was conducted on ten volunteers’ motion representation in different training tasks, which are divided into three stages: over-challenge, challenge, less challenge, by choosing characteristic quantities with significant differences among the various difficulty task stages, as a training set for the support vector machines (SVM). Experimental results from 12 volunteers, with tasks conducted on the lower limb rehabilitation robot LLR-II show that the rehabilitation robot can accurately predict patient participation and training task difficulty. The prediction accuracy reflects the superiority of the Hybrid QPSO-SVM algorithm.


2020 ◽  
Author(s):  
Andrea Ferrario ◽  
Burcu Demiray ◽  
Kristina Yordanova ◽  
Minxia Luo ◽  
Mike Martin

BACKGROUND Reminiscence is the act of thinking or talking about personal experiences that occurred in the past. It is a central task of old age that is essential for healthy aging, and it serves multiple functions, such as decision-making and introspection, transmitting life lessons, and bonding with others. The study of social reminiscence behavior in everyday life can be used to generate data and detect reminiscence from general conversations. OBJECTIVE The aims of this original paper are to (1) preprocess coded transcripts of conversations in German of older adults with natural language processing (NLP), and (2) implement and evaluate learning strategies using different NLP features and machine learning algorithms to detect reminiscence in a corpus of transcripts. METHODS The methods in this study comprise (1) collecting and coding of transcripts of older adults’ conversations in German, (2) preprocessing transcripts to generate NLP features (bag-of-words models, part-of-speech tags, pretrained German word embeddings), and (3) training machine learning models to detect reminiscence using random forests, support vector machines, and adaptive and extreme gradient boosting algorithms. The data set comprises 2214 transcripts, including 109 transcripts with reminiscence. Due to class imbalance in the data, we introduced three learning strategies: (1) class-weighted learning, (2) a meta-classifier consisting of a voting ensemble, and (3) data augmentation with the Synthetic Minority Oversampling Technique (SMOTE) algorithm. For each learning strategy, we performed cross-validation on a random sample of the training data set of transcripts. We computed the area under the curve (AUC), the average precision (AP), precision, recall, as well as F1 score and specificity measures on the test data, for all combinations of NLP features, algorithms, and learning strategies. RESULTS Class-weighted support vector machines on bag-of-words features outperformed all other classifiers (AUC=0.91, AP=0.56, precision=0.5, recall=0.45, F1=0.48, specificity=0.98), followed by support vector machines on SMOTE-augmented data and word embeddings features (AUC=0.89, AP=0.54, precision=0.35, recall=0.59, F1=0.44, specificity=0.94). For the meta-classifier strategy, adaptive and extreme gradient boosting algorithms trained on word embeddings and bag-of-words outperformed all other classifiers and NLP features; however, the performance of the meta-classifier learning strategy was lower compared to other strategies, with highly imbalanced precision-recall trade-offs. CONCLUSIONS This study provides evidence of the applicability of NLP and machine learning pipelines for the automated detection of reminiscence in older adults’ everyday conversations in German. The methods and findings of this study could be relevant for designing unobtrusive computer systems for the real-time detection of social reminiscence in the everyday life of older adults and classifying their functions. With further improvements, these systems could be deployed in health interventions aimed at improving older adults’ well-being by promoting self-reflection and suggesting coping strategies to be used in the case of dysfunctional reminiscence cases, which can undermine physical and mental health.


Author(s):  
Sameer Ahmad Bhat ◽  
Abolfazl Mehbodniya ◽  
Ahmed Elsayed Alwakeel ◽  
Julian Webber ◽  
Khalid Al-Begain

2014 ◽  
Vol 926-930 ◽  
pp. 2438-2441 ◽  
Author(s):  
Feng Yu ◽  
Ming Hua Jiang ◽  
Jing Liang ◽  
Xiao Qin ◽  
Ming Hu ◽  
...  

The recent growing interest for indoor localization-based services has created a need for more accurate and real-time indoor localization solutions. Indoor localization based on existing WiFi signal strength is becoming increasingly prevalent and ubiquity. In this paper, we utilize the information of the signal strength received from the surrounding access points (APs) to determine the user localization. The propose algorithm based on support vector machines (SVM) algorithm, and comparing with three kernel functions, radial basis function (RBF) performs best of all. Experimental results indicate that the proposed algorithm leads to improvement on localization accuracy.


Sign in / Sign up

Export Citation Format

Share Document