scholarly journals Improving Sustainability through Corrosion Resistance of Reinforced Concrete by Using a Manufactured Blended Cement and Fly Ash

2018 ◽  
Vol 10 (6) ◽  
pp. 2004 ◽  
Author(s):  
Hector Campos Silva ◽  
Pedro Garces Terradillos ◽  
Emilio Zornoza ◽  
Jose Mendoza-Rangel ◽  
Pedro Castro-Borges ◽  
...  
2014 ◽  
Vol 507 ◽  
pp. 286-290
Author(s):  
V. Rajkumar

The main aim of this investigation is to study the influence of monoethylamine, diethylamine and triethylamine inhibitors on the corrosion resistance performance of 25% fly ash blended cement concrete. These inhibitors were added in dosages of 1%, 2%, 3% and 4% by weight of cement and experimental investigations have been carried out to compare the effectiveness of these three inhibitors with regard to strength and corrosion resistance. The mechanical strength properties studied were compressive, split tensile, flexural and bond strengths. The resistance to corrosion was evaluated based on the performance of the concrete for the penetration of chloride ions by means of impressed voltage technique, Rapid chloride permeability test (RCPT), AC impedance measurement, and weight loss measurement and ultimately the most effective of the three inhibitors and its optimal dosage has been determined.


2021 ◽  
Vol 7 (2) ◽  
pp. 33-55
Author(s):  
Shuai Zou ◽  
◽  
Xiao-Nao Zuo ◽  
Xinagnan Li ◽  
Jianzhuang Xiao ◽  
...  

series of corrosion experiments of cement paste-steel bar specimens with different contents of slag and fly ash were performed to investigate the influence of slag/fly ash on the corrosion behavior of steel bars in concrete under seawater. In this investigation, the corrosion behavior of specimen was electrochemically monitored by open-circuit potential (OCP), Tafel polarization (TP) and electrochemical impedance spectra (EIS). Meanwhile, SEM/EDS and XRD were applied to microscopically analyze the microstructure deterioration of materials. Results showed that, replacing cement with slag/fly ash caused a decrease in Ca(OH)2 as well as an increase in C-S-H gel and Friedel's salt in concrete, which can improve the chloride-solidification ability and slow down the chloride diffusion in concrete by both physical adsorption and chemical binding, and thereafter promoting the corrosion resistance of steel bars in concrete in marine environment. Compared to slag, the equal replacing content of fly ash can contribute to a better improving effect on the corrosion resistance of reinforced concrete in marine environment. In this study, a replacement of cement by 20% slag+20% fly ash led to an optimum improving effect on its corrosion resistance. In addition, the results also indicate that the corrosion of reinforced concrete caused by seawater attack does not occur at a uniform rate, but it can firstly maintain a long-term uncorroded state, and then develops rapidly after pitting corrosion occurs.


Sign in / Sign up

Export Citation Format

Share Document