scholarly journals Feasibility of Eco-Friendly Binary and Ternary Blended Binders Made of Fly-Ash and Oil-Refinery Spent Catalyst in Ready-Mixed Concrete Production

2018 ◽  
Vol 10 (9) ◽  
pp. 3136 ◽  
Author(s):  
Carla Costa ◽  
José Marques

Large-scale recycling of new industrial wastes or by-products in concrete has become a crucial issue for construction materials sustainability, with impact in the three pillars (environmental, social and economic), while still maintaining satisfactory, or improved, concrete performance. The main goal of the paper is to evaluate the technological feasibility of the partial, or total, replacement of fly-ashes (FA), widely used in ready-mixed concrete production, with spent equilibrium catalyst (ECat) from the oil-refinery industry. Three different concrete mixtures with binary binder blends of FA (33.3% by mass, used as reference) and of ECat (16.7% and 33.3%), as well as a concrete mixture with a ternary binder blend with FA and ECat (16.7%, of each) were tested regarding their mechanical properties and durability. Generically, in comparison with commercial concrete (i) 16.7% ECat binary blended concrete revealed improved mechanical strength and durability; (ii): ternary FA-ECat blended binder concrete presented similar properties; and (iii) 33% ECat binary blended concrete has a lower performance. The engineering performance of all ECat concretes meet both the international standards and the reference durability indicators available in the scientific literature. Thus, ECat can be a constant supply for ready-mixed eco-concretes production, promoting synergetic waste recycling across industries.

2016 ◽  
Vol 112 ◽  
pp. 570-580 ◽  
Author(s):  
Hai-Thong Ngo ◽  
El-Hadj Kadri ◽  
Abdelhak Kaci ◽  
Tien-Tung Ngo ◽  
Alain Trudel ◽  
...  

2019 ◽  
Vol 209 ◽  
pp. 283-294 ◽  
Author(s):  
João Nuno Pacheco ◽  
Jorge de Brito ◽  
Carlos Chastre ◽  
Luís Evangelista

2021 ◽  
Author(s):  
René Antaño-López ◽  
Fidel Hernández-Pérez ◽  
Fabricio Espejel-Ayala

Due to the low abundance of vanadium in nature (about 135 g/t), the feasibility to recover it from industrial wastes has highly attracted scientific and technological attention. The main recovery routes reported are associated with chemical or thermochemical processes. However, the electrochemical recovery of vanadium from industrial wastes has been poorly investigated. In this work, a thermodynamic and electrochemical study for the possible vanadium recovery from a spent catalyst generated in the petrochemical industry was conducted. The study was divided into two stages using low vanadium concentrations. In the first stage, the recovery of vanadium was possible in its V4+ state at low reduction potentials, whereas for the second stage, cyclic voltammetry was used to calculate the diffusion coefficient and the heterogeneous velocity coefficient of the V5+/V4+ redox pair. The obtained values are similar to those reported in the literature for aqueous solutions at high vanadium concentrations and would allow the design of the system at large scale. This report aims to set the conditions for the possible vanadium recovery from a spent catalyst by means of electrochemical processes, although the optimization of such conditions must be further explored.


2018 ◽  
Vol 143 ◽  
pp. 02010 ◽  
Author(s):  
Evgeniya Tkach ◽  
Vladimir Solovyov ◽  
Semen Tkach

The purpose of these studies is to justify the feasibility of recycling different types of industrial waste instead of conventional expensive raw materials in production of environmentally friendly aerated concrete with required construction and operational properties. The impact of wastes from various industries on the environmental condition of affected areas, as well as the results of their environmental assessment were analyzed to determine whether these wastes could be used in production of high-performance building materials. The assessment of industrial wastes in aerated concrete production suggests that industrial wastes of hazard class IV can be recycled to produce aerated concrete. An environmentally friendly method for large-scale waste recycling, including a two-step environmentally sustainable mechanism, was developed. The basic quality indicators of the modified aerated concrete proved that the environmental safety could be enhanced by strengthening the structure, increasing its uniformity and improving thermal insulation properties. The modified non-autoclaved aerated concrete products with improved physical and operational properties were developed. They have the following properties: density – D700; class of concrete – B3.5; thermal transmittance coefficient – 0.143 W/(m·°C); frost resistance – F75.


Sign in / Sign up

Export Citation Format

Share Document