scholarly journals Web-Based Recommendation System for Smart Tourism: Multiagent Technology

2019 ◽  
Vol 11 (2) ◽  
pp. 323 ◽  
Author(s):  
Raheleh Hassannia ◽  
Ali Vatankhah Barenji ◽  
Zhi Li ◽  
Habib Alipour

The purpose of the study is to design and develop a recommended system based on agent and web technologies, which utilizes a hybrid recommendation filtering for the smart tourism industry. A hybrid recommendation system based on agent technology is designed by considering the online communication with other sectors in the tourism industry, such as the tourism supply chain, agency etc. However, online communication between the sectors via agents is designed and developed based on the contract net protocol. Furthermore, the design system is developed on the java agent development framework and implemented as a web application. Case study-based results considering two scenarios involving 100 customers illustrated that the proposed web application improves the rate of the recommendation for the customers. In the first scenario without disturbances, this rate was improved by 20% and the second scenario with disturbances yielded a 30% rate of acceptable recommendation. In addition, based on the second scenario, real time data communication on the system occurred, thus the proposed system supported real time data communication.

2010 ◽  
Author(s):  
Michael John Taggart ◽  
Niall Atholl Murray ◽  
Trevor Sturgeon ◽  
William McNeil

India is mainly based on farming. Agriculture is the main source of economy in India, but the farmers are suffering with many problems such as lack of crops yield, lack of water, soil fertility etc. To address those issues this recommendation system is proposed, and it significantly influences the crops yields. The need for the accessible data on the accomplishment for getting crops in good yields are investigated. To accomplish that, real-time data are collected from the farmers from different places of Karnataka. In this paper linear regression and collaborative filtering are used, and results are compared to draw an inference for more accurate recommendation system.


2020 ◽  
Vol 16 (5) ◽  
pp. 155014772091706 ◽  
Author(s):  
Chunling Li ◽  
Ben Niu

With the wide application of Internet of things technology and era of large data in agriculture, smart agricultural design based on Internet of things technology can efficiently realize the function of real-time data communication and information processing and improve the development of smart agriculture. In the process of analyzing and processing a large amount of planting and environmental data, how to extract effective information from these massive agricultural data, that is, how to analyze and mine the needs of these large amounts of data, is a pressing problem to be solved. According to the needs of agricultural owners, this article studies and optimizes the data storage, data processing, and data mining of large data generated in the agricultural production process, and it uses the k-means algorithm based on the maximum distance to study the data mining. The crop growth curve is simulated and compared with improved K-means algorithm and the original k-means algorithm in the experimental analysis. The experimental results show that the improved K-means clustering method has an average reduction of 0.23 s in total time and an average increase of 7.67% in the F metric value. The algorithm in this article can realize the functions of real-time data communication and information processing more efficiently, and has a significant role in promoting agricultural informatization and improving the level of agricultural modernization.


2013 ◽  
Vol 411-414 ◽  
pp. 840-843
Author(s):  
A Li Mu Jiang Yiming ◽  
Re Zi Wan Maimaiti ◽  
Aisikaer Kadier

This paper presents a method to support real-time data communication over switched Ethernet. The work without modifications in the Ethernet hardware and coexists with TCP/IP suites. Experiment results shows that compared with conventional real-time network protocol, the proposed work has better real-time performances and meets the requirements for industrial control network real-time applications.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7127
Author(s):  
Raffay Rizwan ◽  
Jehangir Arshad ◽  
Ahmad Almogren ◽  
Mujtaba Hussain Jaffery ◽  
Adnan Yousaf ◽  
...  

Electrical power consumption and distribution and ensuring its quality are important for industries as the power sector mandates a clean and green process with the least possible carbon footprint and to avoid damage of expensive electrical components. The harmonics elimination has emerged as a topic of prime importance for researchers and industry to realize the maintenance of power quality in the light of the 7th Sustainable Development Goals (SDGs). This paper implements a Hybrid Shunt Active Harmonic Power Filter (HSAHPF) to reduce harmonic pollution. An ANN-based control algorithm has been used to implement Hardware in the Loop (HIL) configuration, and the network is trained on the model of pq0 theory. The HIL configuration is applied to integrate a physical processor with the designed filter. In this configuration, an external microprocessor (Raspberry PI 3B+) has been employed as a primary data server for the ANN-based algorithm to provide reference current signals for HSAHPF. The ANN model uses backpropagation and gradient descent to predict output based on seven received inputs, i.e., 3-phase source voltages, 3-phase applied load currents, and the compensated voltage across the DC-link capacitors of the designed filter. Moreover, a real-time data visualization has been provided through an Application Programming Interface (API) of a JAVA script called Node-RED. The Node-RED also performs data transmission between SIMULINK and external processors through serial socket TCP/IP data communication for real-time data transceiving. Furthermore, we have demonstrated a real-time Supervisory Control and Data Acquisition (SCADA) system for testing HSAHPF using the topology based on HIL topology that enables the control algorithms to run on an embedded microprocessor for a physical system. The presented results validate the proposed design of the filter and the implementation of real-time system visualization. The statistical values show a significant decrease in Total Harmonic Distortion (THD) from 35.76% to 3.75%. These values perfectly lie within the set range of IEEE standard with improved stability time while bearing the computational overheads of the microprocessor.


Sign in / Sign up

Export Citation Format

Share Document