scholarly journals Tillage, Cover Crop and Crop Rotation Effects on Selected Soil Chemical Properties

2019 ◽  
Vol 11 (10) ◽  
pp. 2770 ◽  
Author(s):  
Samuel Haruna ◽  
Nsalambi Nkongolo

Research results still vary, especially between locations, on the effects of agricultural practices on soil chemical properties and crop yield, and not all reasons for the variation are fully understood. Thus, this study investigated the influence of tillage, cover crop and crop rotation management practices on selected soil chemical properties. The study was conducted on a silt-loam soil in central Missouri during the 2011 to 2013 growing seasons. The soil was managed by moldboard plow tillage at two levels (tillage [till] vs. no-tillage [NT]). Cover crop management included cereal rye (Secale cereale) at two levels (cover crop [CC] vs. no cover crop [NC]). The main crops that were grown were a corn (Zea mays L.) and soybean (Glycine max L.) rotation. The soil samples were collected each year at 0–10 cm, 10–20 cm, 20–40 cm and 40–60 cm depths for the analysis of soil chemical properties. The results showed that after 3 years of study, the relative increase in percent soil organic matter (OM) was 4% under the no-till management as compared with moldboard plow tillage. In addition, the relative change in the percentage of OM was 8% greater in the CC management compared with NC. Furthermore, the results show a significant improvement (p = 0.0304) in total carbon with a combination of no-till management and a corn/soybean rotation as compared with continuous corn and soybean. The interaction effects of the management practices on the soil chemical properties were difficult to predict throughout the study.

2020 ◽  
Vol 112 (5) ◽  
pp. 4395-4406
Author(s):  
Maysoon M. Mikha ◽  
Gary W. Hergert ◽  
Xin Qiao ◽  
Bijesh Maharjan

Weed Science ◽  
2009 ◽  
Vol 57 (4) ◽  
pp. 417-426 ◽  
Author(s):  
Vince M. Davis ◽  
Kevin D. Gibson ◽  
Thomas T. Bauman ◽  
Stephen C. Weller ◽  
William G. Johnson

Horseweed is an increasingly common and problematic weed in no-till soybean production in the eastern cornbelt due to the frequent occurrence of biotypes resistant to glyphosate. The objective of this study was to determine the influence of crop rotation, winter wheat cover crops (WWCC), residual non-glyphosate herbicides, and preplant application timing on the population dynamics of glyphosate-resistant (GR) horseweed and crop yield. A field study was conducted from 2003 to 2007 in a no-till field located at a site that contained a moderate infestation of GR horseweed (approximately 1 plant m−2). The experiment was a split-plot design with crop rotation (soybean–corn or soybean–soybean) as main plots and management systems as subplots. Management systems were evaluated by quantifying in-field horseweed plant density, seedbank density, and crop yield. Horseweed densities were collected at the time of postemergence applications, 1 mo after postemergence (MAP) applications, and at the time of crop harvest or 4 MAP. Viable seedbank densities were also evaluated from soil samples collected in the fall following seed rain. Soybean–corn crop rotation reduced in-field and seedbank horseweed densities vs. continuous soybean in the third and fourth yr of this experiment. Preplant herbicides applied in the spring were more effective at reducing horseweed plant densities than when applied in the previous fall. Spring-applied, residual herbicide systems were the most effective at reducing season-long in-field horseweed densities and protecting crop yields since the growth habit of horseweed in this region is primarily as a summer annual. Management systems also influenced the GR and glyphosate-susceptible (GS) biotype population structure after 4 yr of management. The most dramatic shift was from the initial GR : GS ratio of 3 : 1 to a ratio of 1 : 6 after 4 yr of residual preplant herbicide use followed by non-glyphosate postemergence herbicides.


2019 ◽  
Vol 10 ◽  
Author(s):  
Sana Romdhane ◽  
Aymé Spor ◽  
Hugues Busset ◽  
Laurent Falchetto ◽  
Juliette Martin ◽  
...  

2020 ◽  
Author(s):  
Maysoon Mikha ◽  
Alan Schlegel

<p>Land sustainability could be influenced by management decisions, soil nutrients content, and soil erosion potential. This study evaluates the management that consist on two sources of nitrogen (cattle beef manure, M; and synthetic fertilizer, F) and two levels of residue removal (0% and 80%) on corn yield and soil chemical properties in a no-tillage irrigated field. The study was initiated in 2011 in Tribune, Kansas where the nitrogen treatments and residue removal were organized in randomized strip design with four replications. After Seven years of annual M addition, corn yield and soil chemical properties significantly increased compared with synthetic fertilizer. Annual residue removal at 80% level greatly reduced soil chemical properties measured especially STN, SOC, and soil P availability for subsequent crops. Residue removal at 80% show a potential to decrease soil EC compared with 0% removal, but the EC reduction was not significant. The data generated from this study shows that soil nutrients content was reduced with removing the residue even in irrigated and well fertilized field unless organic amendment was accompanied the residue removal practice.</p>


2018 ◽  
Vol 8 ◽  
Author(s):  
Filipe Behrends Kraemer ◽  
Héctor José María Morrás

Soil macropores are dominant pathways of water flow and their impact on hydraulic properties is directly related to their geometrical and topological characteristics. A number of field and micromorphological analysis have shown that agriculture management under no-tillage promotes the development of a microstructure characterized by platy aggregates and horizontal planes in the topsoil, together with a densification at a subjacent layer, thus raising questions about physical properties and water dynamics under this system of cultivation. Moreover, scarce information is available about the evolution of pore architecture and physical parameters in soils under no-till with different cropping intensity. The objective of this work was to evaluate soil porosity in a silty loam A horizon of a Typic Argiudoll (Monte Buey series) of northern Pampa Region (Argentina) under two no-tilled contrasting managements: Good Agricultural Practices (GAP) –highly intensified cropping sequence including corn and wheat in addition to soybean-, Poor Agricultural Practices (PAP) -simplified crop sequence, with predominance of soybean- and a Natural Environment (NE) as reference. Topsoil porosity was assessed by micromorphology, micromorphometry and water retention curves approach, and the values obtained were related to some physical and chemical variables. Results of the morphological analysis revealed important differences between both agricultural treatments. In the surface layer in GAP, platy aggregates are thick and result from the cohesion of rounded microaggregates of biological origin; in PAP they are thin and dense, resulting mostly from compaction of individual soil particles and small microaggregates. A soil densification is evident in both agricultural treatments at 5-10 cm depth, although the morphology and size of aggregates and pores also differ between them. Micromorphometric analyses have shown differences in total macroporosity as well as in the size, morphology and orientation of macropores between both treatments. Macroporosity values obtained by digital methods were coincidently reflected by the pressure plate method. Porosity variables measured by digital analysis, in particular elongated pores and pore orientation, appear more sensitive than other soil properties (total carbon, aggregate stability, bulk density) in discriminating treatments. Although no-till cultivation led to the formation of platy microstructures and a decrease of soil porosity compared to NE, both agricultural treatments presented optimal values of Ks and water movement was not impaired. As expected, all morphological and analytical soil variables were better in the NE treatment. In addition, it was interesting to verify that the values of several parameters were close or similar between GAP and NE. Even when more intensified crop sequence (GAP) increases machinery traffic, morphological, physical and chemical soil properties were here improved compared to PAP. In this case, the higher proportion of different graminea into the agricultural cycle, besides its effect on the development of root biopores, seems to promote a higher fauna activity which effectively counteracts the vertical mechanical compression produced by traffic. These results suggest that, in addition to the known benefits of non-tillage on soil conservation, the improvement of various soil properties could be achieved by integrating this method of cultivation with suitable agricultural managements.


Sign in / Sign up

Export Citation Format

Share Document