scholarly journals Effects of Supercritical CO2 Treatment Temperature on Functional Groups and Pore Structure of Coals

2019 ◽  
Vol 11 (24) ◽  
pp. 7180
Author(s):  
Zhaolong Ge ◽  
Mengru Zeng ◽  
Yugang Cheng ◽  
Haoming Wang ◽  
Xianfeng Liu

The buried depth of a coal seam determines the temperature at which CO2 and coal interact. To better understand CO2 sequestration, the pore structure and organic functional groups of coal treated with different ScCO2 temperatures were studied. In this study, three different rank coals were treated with ScCO2 at different temperatures under 8 MPa for 96 h in a geochemical reactor. The changes in pore structure and chemical structure of coal after ScCO2 treatment were analyzed using mercury intrusion porosimetry, attenuated total reflection Fourier transform infra-red spectroscopy, fractal theory, and curve fitting. The results show that the enhancement effect of ScCO2 on pore structure of coal becomes less significant as the increase of buried depth. In most of the treated coal samples, the variation proportion of mesopores decreased and the variation proportion of macropores increased. In the relatively higher rank coals, the degree of condensation (DOC) of aromatic rings decreased after treatment with ScCO2. The DOC values showed a U-shape relationship with temperature, and the aromaticity showed a downward trend with increasing temperature. The chemical structural changes in the relatively lower rank coal sample were complex. These findings will provide an understanding of mechanisms relevant to CO2 sequestration with enhanced coalbed methane recovery under different geothermal gradients and for different ranks of coal.

Energy ◽  
2019 ◽  
Vol 173 ◽  
pp. 1054-1077 ◽  
Author(s):  
Chaojun Fan ◽  
Derek Elsworth ◽  
Sheng Li ◽  
Lijun Zhou ◽  
Zhenhua Yang ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3419 ◽  
Author(s):  
Erlei Su ◽  
Yunpei Liang ◽  
Lei Li ◽  
Quanle Zou ◽  
Fanfan Niu

Tectonic coals in coal seams may affect the process of enhanced coalbed methane recovery with CO2 sequestration (CO2-ECBM). The main objective of this study was to investigate the differences between supercritical CO2 (ScCO2) and intact and tectonic coals to determine how the ScCO2 changes the coal’s properties. More specifically, the changes in the tectonic coal’s pore structures and its gas desorption behavior were of particular interest. In this work, mercury intrusion porosimetry, N2 (77 K) adsorption, and methane desorption experiments were used to identify the difference in pore structures and gas desorption properties between and intact and tectonic coals after ScCO2 treatment. The experimental results indicate that the total pore volume, specific surface area, and pore connectivity of tectonic coal increased more than intact coal after ScCO2 treatment, indicating that ScCO2 had the greatest influence on the pore structure of the tectonic coal. Additionally, ScCO2 treatment enhanced the diffusivity of tectonic coal more than that of intact coal. This verified the pore structure experimental results. A simplified illustration of the methane migration before and after ScCO2 treatment was proposed to analyze the influence of ScCO2 on the tectonic coal reservoir’s CBM. Hence, the results of this study may provide new insights into CO2-ECBM in tectonic coal reservoirs.


Fuel ◽  
2010 ◽  
Vol 89 (5) ◽  
pp. 1110-1118 ◽  
Author(s):  
Xiaorong Wei ◽  
Paul Massarotto ◽  
Geoff Wang ◽  
Victor Rudolph ◽  
Sue D. Golding

2020 ◽  
Vol 12 (9) ◽  
pp. 3927 ◽  
Author(s):  
Yugang Cheng ◽  
Mengru Zeng ◽  
Zhaohui Lu ◽  
Xidong Du ◽  
Hong Yin ◽  
...  

Research on the physicochemical reactions between supercritical carbon dioxide (Sc-CO2) and shale at different temperature is essential for geological CO2 sequestration. In this paper, shale from the Longmaxi formation in Sichuan basin of China was collected to study the changes in mineral composition, pore structure, and organic functional groups treated with Sc-CO2 at fixed pressure 8 MPa and temperatures 40 °C to 80 °C. Samples were analyzed with x-ray diffraction, CO2/N2 gas adsorption, and Fourier transform infrared spectroscopy. The results show that the dissolution of clay minerals by Sc-CO2 first declined, but then increased when the temperature increased; dissolution reached a minimum at 60 °C. The specific surface area, total pore volume, predominant pore type (mesopores), and fractal dimension of the shale pore structure first increases and then decreases with increasing temperature. The destruction of hydroxyl structures by Sc-CO2 is related to the destruction of OH–N and ring hydroxyls. As the temperature increases, the hydroxyl destruction first increases and then decreases. The aromatic hydrocarbons are mainly dominated by 3H and 2H, and their abundances increase significantly as temperature increases, whereas the 4H shows a decreasing trend; the 1H abundance does not change appreciably. The relative abundances of aromatic and aliphatic hydrocarbons decrease linearly as the temperature increases. These research results provide theoretical support for the geological storage of Sc-CO2 in shale at different temperatures.


Sign in / Sign up

Export Citation Format

Share Document