scholarly journals Hybridized Intelligent Home Renewable Energy Management System for Smart Grids

2020 ◽  
Vol 12 (5) ◽  
pp. 2117 ◽  
Author(s):  
Yonghong Ma ◽  
Baixuan Li

The incorporation of renewable energies and power storage at distribution facilities are one of the important features in the smart grid. In this paper, a hybridized intelligent home renewable energy management system (HIHREM) that combines solar energy and energy storage services with the smart home is planned based on the demand response and time of consumption pricing is applied to programs that offer discounts to consumers that reduce their energy consumption during high demand periods. The system is designed and handled with minimal energy requirements at home through installation of renewable energy, preparation, and arrangement of power stream during peak and off-peak periods. The best energy utilization of residential buildings with various overlapping purposes is one of the most difficult issues correlated with the implementation of intelligent micro-network systems. A major component of the smart grid, the domestic energy control system (HIHREM) provides many benefits, such as power bill reductions, reduction in wind generation, and demand compliance. This showed that the proposed energy scheduling method minimizes the energy consumption by 48% and maximizes the renewable energy consumed at the rate 65% of the total energy generated. A new model for smart homes with renewable energies is introduced in this report. The proposed HIHREM method achieves high performance and reduces cost-utility.

Author(s):  
Siva Ganesh Malla ◽  
Jagan Mohana Rao Malla ◽  
Priyanka Malla ◽  
Sreekanth Ramasamy ◽  
Satish Kumar Doniparthi ◽  
...  

Abstract Renewable energy-based smart grids are famous nowadays due to their high intellectual properties. The world is starting new inventions in renewable energy-based electrical power generation systems to reduce global warming. However, a single renewable energy source cannot maintain a proper energy management system and reliability of power towards loads. Hence, integrating two or more systems is very important and can form a smart grid with an appropriate energy management system. Effective energy management system for a 4-wire 1-MW smart grid system is proposed in this paper. The system is composed of three solar plants and three wind farms with a battery bank. The battery energy management system can operate the complete system as a smart grid with the proper design of the controllers. The maximum power points of PV plants are tracked using a hybrid algorithm that merges the merits of Modified Invasive Weed Optimization and Perturb and Observe (P&O). Thus, the maximum power is obtained under partial shading conditions. The P&O algorithm is also developed to track the maximum power of wind farms. All the loads and generation units are connected in a ring-configuration distribution with a centralized battery energy management system. The loads are selected to be unbalanced, nonlinear and reactive to simulate practical cases. TS-Fuzzy based common inverter controller is implemented to maintain acceptable power quality, which is linked to the battery. The proposed inverter controller can work as a reactive power compensator, active power filter, voltage regulator under unbalanced load, and power balancing device between generation and load. Extensive Hardware-in-Loop (HIL) results are presented to validate the effectiveness of the proposed system.


2019 ◽  
Vol 8 (4) ◽  
pp. 1406-1411

Energy management system is one of the challenging tasks associated with residential buildings. The cost of energy is purely based on the amount of energy consumed during peak hours. This paper focuses on an efficient energy management system for the control of energy consumption during peak hours. ZigBee module is used to monitor the energy consumed by the home appliances. The working of the proposed system is categorized into two modes of operation: normal time and peak time. During normal time, all home appliances can be operated and the cost of energy will be at normal rate. Whereas, during peak time, high rating machines will be shut down, that is controlled by ZigBee and the light loads will be operated from battery supply. Thus the proposed system reduces the energy consumption and is cost effective. Simulation analysis is done using proteus software. Hardware model is also implemented which proves that the proposed energy management system improves the energy efficiency.


Author(s):  
V. Nakhodov ◽  
O. Borychenko ◽  
A. Cherniavskyi

Statistics show that energy is one of the highest operating costs in a manufacturing enterprise. So, improving energy efficiency can lead to a significant increase in profits and reduce the impact of the enterprise on the environment. To increase the performance of energy efficiency activities, it is necessary to implement an energy management system. One of the components of this system is energy monitoring, which, in turn, is based on the periodic collection and analysis of data to assess the state of the monitoring objects in terms of energy efficiency. In this paper, the role and place of energy monitoring in the energy management system of an industrial enterprise are noted. The paper proposes the concept of creating energy monitoring system in industrial companies, which is based on the combination of a monitoring system based on specific energy consumption, and usage of group energy characteristics of production facilities. Implementing such energy monitoring systems will allow to conduct operational control of energy efficiency of production facilities by creating individual systems for monitoring energy efficiency, as well as successfully carry out such monitoring at the enterprise and its subdivisions over longer periods of time using specific energy consumption indicators. It also provides general guidelines for conducting energy monitoring. These guidelines were formed based on the results of studying various methods and scientific publications in the field of energy monitoring, as well as on the basis of practical experience in the development and implementation of energy management systems. Particular attention is paid to the issues of processing and analysis of information about the objects of energy monitoring of industrial enterprises. The practical application of the concept of creating energy monitoring systems envisages gradual improvement of the existing monitoring system based on the specific energy consumption, which will be further completely replaced with individual energy efficiency monitoring systems.


Sign in / Sign up

Export Citation Format

Share Document