scholarly journals Hybrid Renewable Energy Microgrid for a Residential Community: A Techno-Economic and Environmental Perspective in the Context of the SDG7

2020 ◽  
Vol 12 (10) ◽  
pp. 3944 ◽  
Author(s):  
Nallapaneni Manoj Kumar ◽  
Shauhrat S. Chopra ◽  
Aneesh A. Chand ◽  
Rajvikram Madurai Elavarasan ◽  
G.M. Shafiullah

Energy, being a prime enabler in achieving sustainable development goals (SDGs), should be affordable, reliable, sustainable, and modern. One of the SDGs (i.e., SDG7) suggests that it is necessary to ensure energy access for all. In developing countries like India, the progress toward SDG7 has somewhat stagnated. The aging conventional electric power system has its dominant share of energy from fossil fuels, plagued with frequent power outages, and leaves many un-electrified areas. These are not characteristics of a sustainable and modern system in the context of the SDG7. Promoting renewable-based energy systems, especially in the context of microgrids (MGs), is one of the promising advances needed to rejuvenate the progress toward the SDG7. In this context, a hybrid renewable energy microgrid (HREM) is proposed that gives assurance for energy access to all in an affordable, reliable, and sustainable way through modern energy systems. In this paper, a techno-economic and environmental modeling of the grid-independent HREM and its optimization for a remote community in South India are presented. A case of HREM with a proposed configuration of photovoltaic/wind turbine/diesel generator/battery energy storage system (PV/WT/DG/BESS) was modeled to meet the community residential electric load requirements. This investigation dealt with the optimum sizes of the different components used in the HREM. The results of this model presented numerous feasible solutions. Sensitivity analysis was conducted to identify the best solution from the four optimized results. From the results, it was established that a PV + DG + BESS based HREM was the most cost-effective configuration for the specific location. In addition, the obtained optimum solutions were mapped with the key criteria of the SDG7. This mapping also suggested that the PV + DG + BESS configuration falls within the context of the SDG7. Overall, it is understood that the proposed HREM would provide energy access to households that is affordable, reliable, sustainable, and modern.

Author(s):  
Amir Ahadi ◽  
Shrutidhara Sarma ◽  
Jae Sang Moon ◽  
Jang Ho Lee

In recent years, integration of electric vehicles (EVs) has increased dramatically due to their lower carbon emissions and reduced fossil fuel dependency. However, charging EVs could have significant impacts on the electrical grid. One promising method for mitigating these impacts is the use of renewable energy systems. Renewable energy systems can also be useful for charging EVs where there is no local grid. This paper proposes a new strategy for designing a renewable energy charging station consisting of wind turbines, a photovoltaic system, and an energy storage system to avoid the use of diesel generators in remote communities. The objective function is considered to be the minimization of the total net present cost, including energy production, components setup, and financial viability. The proposed approach, using stochastic modeling, can also guarantee profitable operation of EVs and reasonable effects on renewable energy sizing, narrowing the gap between real-life daily operation patterns and the design stage. The proposed strategy should enhance the efficiency of conventional EV charging stations. The key point of this study is the efficient use of excess electricity. The infrastructure of the charging station is optimized and modeled.


Author(s):  
Tomonori Goya ◽  
Kosuke Uchida ◽  
Yoshihisa Kinjyo ◽  
Tomonobu Senjyu ◽  
Atsushi Yona ◽  
...  

Nowadays, renewable energy systems such as wind turbine generators and photovoltaic systems are introduced to power systems. However, the renewable energy system is influenced by weather conditions, and the generated power of the renewable energy system is deviated. For the provision of deviated power, the battery energy storage system is introduced to suppress the deviation of the frequency and voltage in power system. However, it needs the large capacity of a battery system, which increases the capital cost. In this paper, we propose a coordinated control strategy between the diesel generator and the battery system to reduce the capital cost of battery, inverter capacity and storage capacity. The proposed control system incorporates the H-infinity control theory, which enables intuitive controller design in frequency domain. Effectiveness of the proposed control system is validated by simulation results.


2016 ◽  
Vol 8 (4) ◽  
pp. 045303 ◽  
Author(s):  
K. J. Gurubel ◽  
V. Osuna-Enciso ◽  
J. J. Cardenas ◽  
A. Coronado-Mendoza ◽  
M. A. Perez-Cisneros ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1381
Author(s):  
Nasser Yimen ◽  
Theodore Tchotang ◽  
Abraham Kanmogne ◽  
Idriss Abdelkhalikh Idriss ◽  
Bashir Musa ◽  
...  

Hybrid Renewable Energy Systems (HRESs) have been touted as an appropriate way for supplying electricity to remote and off-grid areas in developing countries, especially in sub-Saharan Africa (SSA), where rural electrification challenges are the most pronounced. This study proposes a two-step methodology for optimizing and analyzing a stand-alone photovoltaic/wind/battery/diesel hybrid system to meet the electricity needs of Fanisua, an off-grid and remote village of northern Nigeria. In the first step, the MATLAB environment was used to run simulations and optimize the system via the genetic algorithm. Then, techno-economic and emissions analysis was carried out in the second step to compare the proposed system to the existing traditional modes of rural electrification in sub-Saharan Africa, namely, the grid-extension and diesel generator. The break-even distance parameter was adopted in the comparison with grid-extension. Besides, the hypothetical project of replacing the diesel generator by the optimal system was analyzed using the Simple Payback Period (SPP) and Net Present Value (NPV) parameters. The resulting optimal design architecture included an 89.271-kW photovoltaic array, a 100.31-W diesel generator, and 148 batteries with a total annualized cost (TAC) and cost of energy (COE) of USD 43,807 and USD 0.25/kWh, respectively. The break-even distance found was 16.2 km, while the NPV and SPP of the hypothetical project were USD 572,382 and 2.8 years, respectively. The savings in carbon dioxide (CO2) emissions of the proposed system compared to the grid extension and the diesel generator were found to be 85,401.08 kg/year and 122,062.85 kg/year, respectively. This study highlighted the role that solar PV-based HRESs could play in the sustainable electricity supply in rural areas of sub-Saharan Africa.


Author(s):  
Malek Belouda

The penetration of renewable energy systems in remote areas contributes to reply to its accrued demand of electricity. Renewable energy systems as photovoltaic generation systems and wind generation systems are characterized by their unpredictable and intermittent character presenting the main drawback of these systems. Although this advantage, the problems caused by the intermittency of these systems can be resolved by employing a battery energy storage system. To this end this paper proposes and analyses an efficient and optimal methodology dedicated to applications fed by renewable energy systems. Since an optimal energy storage bank sizing is needed in order to assure the continuity and reliability of electricity supply of remote areas from these kinds of energy sources. The first part of this article describes the renewable hybrid system structure and different factors influencing the storage system dimensioning. Different scenarios of renewable sources power generations in order to develop an optimal battery bank sizing algorithm are investigated the second part of this article. The formulation of the algorithm is finally presented and discussed.


2018 ◽  
Vol 10 (11) ◽  
pp. 4045 ◽  
Author(s):  
Tae Jung ◽  
Donghun Kim ◽  
Jongwoo Moon ◽  
SeoKyung Lim

The Maldives, one of the Small Island Developing States (SIDS) with great solar potential, is keen to promote renewable energy systems to reduce its heavy reliance on imported diesel for power generation. However, adopting renewable energy systems is still burdensome for the Maldives not only because of its high initial costs and insufficient financial resources but also because of a lack of understanding about whether the deployment of a renewable system is economically feasible. Therefore, the concept of grid parity is explored as an important concept in this paper to examine the possible timeframe for reaching it. A distinctive feature of the paper is that the paper used actual cost and technical information to analyze the levelized cost of energy (LCOEs) of the independent renewable system in a remote island and examined its timeframe for reaching the grid parity condition. Based on economic and technical information from a project for replacing existing diesel generator to photovoltaic (PV) with energy storage system (ESS) in Kuda Bandos Island in the Maldives, the paper considers three different system configurations and evaluates which configuration could result in the most optimal off-grid energy systems in this remote island. With sensitivity analysis on various uncertainties, the paper shows the range of the levelized costs of energy and the periods required for reaching grid parity for deploying solar photovoltaics and ESSs in Kuda Bandos Island, Maldives. The result indicates that the photovoltaic system is an economically feasible option for the resort, and that grid parity can be reached within the project lifetime. However, the result shows that the use of advanced ESSs is still an expensive option and would not be economically reasonable.


Sign in / Sign up

Export Citation Format

Share Document