scholarly journals Successional Variation in the Soil Microbial Community in Odaesan National Park, Korea

2020 ◽  
Vol 12 (11) ◽  
pp. 4795 ◽  
Author(s):  
Hanbyul Lee ◽  
Seung-Yoon Oh ◽  
Young Min Lee ◽  
Yeongseon Jang ◽  
Seokyoon Jang ◽  
...  

Succession is defined as variation in ecological communities caused by environmental changes. Environmental succession can be caused by rapid environmental changes, but in many cases, it is slowly caused by climate change or constant low-intensity disturbances. Odaesan National Park is a well-preserved forest located in the Taebaek mountain range in South Korea. The forest in this national park is progressing from a mixed-wood forest to a broad-leaved forest. In this study, microbial community composition was investigated using 454 sequencing of soil samples collected from 13 different locations in Odaesan National Park. We assessed whether microbial communities are affected by changes in environmental factors such as water content (WC), nutrient availability (total carbon (TC) and total nitrogen (TN)) and pH caused by forest succession. WC, TC, TN and pH significantly differed between the successional stages of the forest. The WC, TC and TN of the forest soils tended to increase as succession progressed, while pH tended to decrease. In both successional stages, the bacterial genus Pseudolabrys was the most abundant, followed by Afipia and Bradyrhizobium. In addition, the fungal genus Saitozyma showed the highest abundance in the forest soils. Microbial community composition changed according to forest successional stage and soil properties (WC, TC, TN, and pH). Furthermore, network analysis of both bacterial and fungal taxa revealed strong relationships of the microbial community depending on the soil properties affected by forest succession.

2018 ◽  
Vol 117 ◽  
pp. 164-174 ◽  
Author(s):  
Maaike van Agtmaal ◽  
Angela L. Straathof ◽  
Aad Termorshuizen ◽  
Bart Lievens ◽  
Ellis Hoffland ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Janneke Schreuder ◽  
Francisca C. Velkers ◽  
Alex Bossers ◽  
Ruth J. Bouwstra ◽  
Willem F. de Boer ◽  
...  

Associations between animal health and performance, and the host’s microbiota have been recently established. In poultry, changes in the intestinal microbiota have been linked to housing conditions and host development, but how the intestinal microbiota respond to environmental changes under farm conditions is less well understood. To gain insight into the microbial responses following a change in the host’s immediate environment, we monitored four indoor flocks of adult laying chickens three times over 16 weeks, during which two flocks were given access to an outdoor range, and two were kept indoors. To assess changes in the chickens’ microbiota over time, we collected cloacal swabs of 10 hens per flock and performed 16S rRNA gene amplicon sequencing. The poultry house (i.e., the stable in which flocks were housed) and sampling time explained 9.2 and 4.4% of the variation in the microbial community composition of the flocks, respectively. Remarkably, access to an outdoor range had no detectable effect on microbial community composition, the variability of microbiota among chickens of the same flock, or microbiota richness, but the microbiota of outdoor flocks became more even over time. Fluctuations in the composition of the microbiota over time within each poultry house were mainly driven by turnover in rare, rather than dominant, taxa and were unique for each flock. We identified 16 amplicon sequence variants that were differentially abundant over time between indoor and outdoor housed chickens, however none were consistently higher or lower across all chickens of one housing type over time. Our study shows that cloacal microbiota community composition in adult layers is stable following a sudden change in environment, and that temporal fluctuations are unique to each flock. By exploring microbiota of adult poultry flocks within commercial settings, our study sheds light on how the chickens’ immediate environment affects the microbiota composition.


1998 ◽  
Vol 21 (4) ◽  
pp. 579-587 ◽  
Author(s):  
Antonis Chatzinotas ◽  
Ruth-Anne Sandaa ◽  
Wilhelm Schönhuber ◽  
Rudolf Amann ◽  
Frida Lise Daae ◽  
...  

2021 ◽  
Author(s):  
Runji Zhang ◽  
Xianrui Tian ◽  
Quanju Xiang ◽  
Petri Penttinen ◽  
Yunfu Gu

Abstract Background: Altitude affects biodiversity and physic-chemical properties of soil, providing natural sites for studying species distribution and the response of biota to environmental changes. We sampled soil at three altitudes in an arid valley, determined the physic-chemical characteristics and microbial community composition in the soils, identified differentially abundant taxa and the relationships between community composition and environmental factors. Results: The low, medium and high altitudes were roughly separated based on the physic-chemical characteristics and clearly separated based on the microbial community composition. The differences in community composition were associated with differences in all measured factors except pH. The contents of organic and microbial biomass C, total and available N and available P, and the richness and diversity of the microbial communities were lowest in the medium altitude. The relative abundances of phyla Proteobacteria, Gemmatimonadetes, Actinobacteria and Acidobacteria were high at all altitudes. The differentially abundant ASVs were mostly assigned to Proteobacteria and Acidobacteria. The highest number of ASVs characterizing altitude were detected in the high altitude. However, the predicted functions of the communities were overlapping, suggesting that the contribution of the communities to soil processes changed relatively little along the altitude gradient. Conclusions: The composition of microbial community at different altitudes was related to the differences of all measuring factors except pH in arid valley in Panzhihua, China.


2010 ◽  
Vol 42 (12) ◽  
pp. 2289-2297 ◽  
Author(s):  
Pedro A. Dimitriu ◽  
Cindy E. Prescott ◽  
Sylvie A. Quideau ◽  
Susan J. Grayston

2021 ◽  
Author(s):  
Qian Guo ◽  
Zhongming Wen ◽  
Hossein Ghanizadeh ◽  
Cheng Zheng ◽  
Yongming Fan ◽  
...  

Abstract Aims Nitrogen (N) deposition is a global environmental problem that can alter community compositions and functions, and consequently, the ecosystem services. In this study, we assessed the responses of aboveground vegetation, surface soil properties and microbial communities to N addition, and explored the drivers of microbial community in a semiarid steppe ecosystem in northwest of China. Methods Thirty-six 6×10-m2 plots composed of six N addition levels and six replicates were distributed in six columns and six rows. Nine vegetation characteristics and seven soil properties were measured and calculated. Soil microbial characteristics were analyzed by 16S rRNA high-throughput sequencing. Results N addition positively affected aboveground vegetation traits such as the community weighted-mean of leaf nitrogen content (LNCWM). High N inputs significantly altered the microbial community assembly process from random to deterministic. The microbial community diversity and composition, however, were not sensitive to N addition. A piecewise structural equation model (SEM) further showed that the microbial community composition was affected by both aboveground vegetation and soil properties. The composition of bacterial communities was mainly regulated by the composition of plant communities and soil total N. In contrast, the composition of fungal communities was driven by soil pH and the community weighted-mean of specific leaf area (SLACWM). Microbial diversity and composition remained unchanged because their drivers were not affected by N addition. The results of this research improved our understanding of the response of grassland ecosystems to N deposition, and provided a theoretical basis for grassland utilization and management under N deposition.


Sign in / Sign up

Export Citation Format

Share Document