scholarly journals Plasma Technology and Its Relevance in Waste Air and Waste Gas Treatment

2020 ◽  
Vol 12 (21) ◽  
pp. 8981
Author(s):  
Christine Dobslaw ◽  
Bernd Glocker

Plasma technology is already used in various applications such as surface treatment, surface coating, reforming of carbon dioxide and methane, removal of volatile organic compounds, odor abatement and disinfection, but treatment processes described in this context do not go beyond laboratory and pilot plant scale. Exemplary applications of both non-thermal plasma and thermal plasma should underline the feasibility of scale-up to industrial application. A non-thermal plasma in modular form was built, which is designed for up to 1000 m³∙h−1 and was successfully practically tested in combination of non-thermal plasma (NTP), mineral adsorber and bio-scrubber for abatement of volatile organic components (VOCs), odorous substances and germs. Thermal plasmas are usually arc-heated plasmas, which are operated with different plasma gases such as nitrogen, oxygen, argon or air. In recent years steam plasmas were gradually established, adding liquid water as plasma gas. In the present system the plasma was directly operated with steam generated externally. Further progress of development of this system was described and critically evaluated towards performance data of an already commercially used water film-based system. Degradation rates of CF4 contaminated air of up to 100% where achieved in industrial scale.

Author(s):  
A. M. Vandenbroucke ◽  
R. Morent ◽  
N. De Geyter ◽  
C. Leys

AbstractThe aim of this paper is to give a review of the research on the decomposition of trichloroethylene (TCE), a common industrial solvent, with combined use of non-thermal plasma and heterogeneous catalysis, i.e. plasma-catalysis. This air purification technique has been investigated over the last decade in an effort to overcome the disadvantages of non-thermal plasma treatment of waste air containing volatile organic compounds (VOCs). Some examples of different plasma technologies used for plasma-catalysis are given. These include the dielectric barrier discharge, the pulsed corona discharge and the atmospheric pressure glow discharge. In a plasma-catalytic hybrid system the catalyst can either be located in the discharge region or downstream of the plasma reactor. The mechanisms that drive both configurations are briefly discussed, followed by an extended literature overview of the removal of TCE with plasma-catalysis.


2020 ◽  
Vol 194 ◽  
pp. 04055
Author(s):  
Liu Liyuan ◽  
Gong Yue ◽  
Chen Yang ◽  
Feng Qinzhong

Non-thermal plasma Technology (NTP) has been widely used in various fields, especially in environmental pollutants treatment field. This paper provides an overview of the global NTP patent landscape by analyzing relative patents based on CNABS and DWPI, selected from 1987 to 2019, which covers patenting activity related to technologies in pollutant removal from the process in the above-mentioned areas. The most common technologies for each area were identified and their developments were analyzed over time. Information related to the main countries, key applicants, current activities and the technology strength were identified by synthesizing important findings from qualitative research and quantitative literature analysis.


2020 ◽  
Vol 12 (21) ◽  
pp. 9240
Author(s):  
Steffen Helbich ◽  
Daniel Dobslaw ◽  
Andreas Schulz ◽  
Karl-Heinrich Engesser

A combined system of a biotrickling filter and a non-thermal plasma (NTP) in a downstream airflow was operated for 1220 days for treatment of emissions of styrene and secondary emissions of germs formed in the biological process. The biotrickling filter was operated at variable inlet concentrations, empty bed residence times (EBRT), type and dosage of fertilizers, irrigation densities, and starvation periods, while dielectric barrier discharge and corona discharge were operated at different specific input energy levels to achieve optimal conditions. Under these conditions, efficiencies in the removal of volatile organic compounds (VOCs), germs and styrene of 96–98%, 1–4 log units and 24.7–50.1 g C m−3 h−1 were achieved, respectively. Fluid simulations of the NTP and a germ emission-based clocking of the discharge reveal further energy saving potentials of more than 90%. The aim of an energy-efficient elimination of VOCs through a biotrickling filter and of secondary germ emissions by a NTP stage in a downstream airflow for potential re-use of purified waste gas as process gas for industrial application was successfully accomplished.


2018 ◽  
Vol 8 (4) ◽  
pp. 936-954 ◽  
Author(s):  
Xinxin Feng ◽  
Hongxia Liu ◽  
Chi He ◽  
Zhenxing Shen ◽  
Taobo Wang

Non-thermal plasma catalysis with high efficiency, high by-product selectivity and superior carbon balance is one of the most promising technologies in the control of volatile organic compounds (VOCs).


Author(s):  
Bao-Ming Sun ◽  
Shui-e Yin ◽  
Xu-Dong Gao

This paper mainly seeks to explore and answer some questions for desulfurization and denitration in thermal power plants in China. Firstly, the desulfurization and denitration technology applicated in the power plant in China at present were analyzed. It is considered that taken combination of the existed technique for purified the pollutants from the thermal power plants, not only lead to the wastage of huge amount of investment, increasing of operating costs, decreasing of the economic benefits, but also add an additional area. It is necessary to develop the integration technology of desulfurization and denitration simultaneously. Secondly the integration technology of desulfurization and denitration at present in China was briefly reviewed such as activated carbon adsorption, SNRB, etc. and most of those at a research stage include the plasma technology. In the third of the paper, the non-thermal plasma technology i.e electron-beam technique, corona discharge and dielectric barrier discharge were discussed. Finally, combined with the actual situation in China, the application prospects of the desulfurization and denitration technology using plasma discharge in the flue gas was bring up. The article also pointed out the barriers need to be overcome if the technology will be applied in power plant, as well as the development direction of desulfurization and denitration technology from flue gas in power plant in China.


Sign in / Sign up

Export Citation Format

Share Document