scholarly journals Agricultural Water Use Efficiency—A Case Study of Inland-River Basins in Northwest China

2020 ◽  
Vol 12 (23) ◽  
pp. 10192
Author(s):  
Wei Qu ◽  
Yanmei Tan ◽  
Zhentao Li ◽  
Eefje Aarnoudse ◽  
Qin Tu

Water resources play a vital role in the process of economic development, especially in arid and semi-arid regions. Improving the efficiency of water use is an effective way to solve the shortage of water resources. In this paper, influencing factors of water utilization efficiency in three inland river basins (Shiyang, Heihe, and Shule river) in Gansu Province, Northwest China, are investigated. Using survey data of 306 households, results of the multiple linear regression analysis show that management capacity and its strictness in a different basin, irrigation technology and facility conditions, and farmers’ self-government are key factors affecting farmers’ irrigation efficiency. Additionally, factors at the farmer and family level, as well as the differences in natural conditions and economic and social development in different regions, also have a significant impact on water use efficiency.

2013 ◽  
Vol 409-410 ◽  
pp. 79-82 ◽  
Author(s):  
Ying Qin Chen ◽  
Xian Feng Huang

Due to the rich resources of urban rainwater and transit flood in coastal areas, rational utilization of rainfall and flood water resources can improve the sustainable utilization, to better serve the coastal development. In this paper, the available quantity of water rainfall and flood water resources in coastal are distributed to domestic water, industrial water, agricultural water and ecologic environmental water. Water price method is used to calculate domestic water efficiency. Energy synthesis is used to calculate the industrial and agricultural water-use efficiency. Ecologic environmental water-use efficiency-sharing coefficient method is used to calculate the ecologic environmental water-use efficiency. Finally, taking Lianyungang City, a Jiangsu coastal city as an example to analyze the rainfall and flood water resources utilization efficiency. The results provide reference to the research for Chinas plain area rainfall and flood water resources efficiency analysis.


2016 ◽  
Vol 74 (5) ◽  
pp. 1106-1115 ◽  
Author(s):  
L. Mu ◽  
L. Fang ◽  
H. Wang ◽  
L. Chen ◽  
Y. Yang ◽  
...  

Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004–2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 632
Author(s):  
Weinan Lu ◽  
Wenxin Liu ◽  
Mengyang Hou ◽  
Yuanjie Deng ◽  
Yue Deng ◽  
...  

Improving agricultural water use efficiency (AWUE) is an important way to solve the shortage of water resources in arid and semi-arid regions. This study used the Super-DEA (data envelopment analysis) to measure the AWUE of 52 cities in Northwest China from 2000 to 2018. Based on spatial and temporal perspectives, it applied Exploratory Spatial Data Analysis (ESDA) to explore the dynamic evolution and regional differences of AWUE. A spatial econometric model was then used to analyze the main factors that influence the AWUE in Northwest China. The results showed firstly that the overall AWUE in Northwest China from 2000 to 2018 presented a steady upward trend. However, only a few cities achieved effective agricultural water usage by 2018, and the differences among cities were obvious. Secondly, AWUE showed an obvious spatial autocorrelation in Northwest China and showed significant high–high and low–low agglomeration characteristics. Thirdly, economic growth, urbanization development, and effective irrigation have significant, positive effects on AWUE, while per capita water resource has a significant, negative influence. Finally, when improving the AWUE in arid and semi-arid regions, plans should be formulated according to local conditions. The results of this study can provide new ideas on the study of AWUE in arid and semi-arid regions and provide references for the formulation of regional agricultural water resource utilization policies as well.


2019 ◽  
Vol 7 (3) ◽  
pp. 322-334 ◽  
Author(s):  
Guoqiang Zhang ◽  
Dongping Shen ◽  
Bo Ming ◽  
Ruizhi Xie ◽  
Xiuliang Jin ◽  
...  

2019 ◽  
Vol 21 (3) ◽  
pp. 381-396 ◽  
Author(s):  
Kun Cheng ◽  
Shuai Wei ◽  
Qiang Fu ◽  
Wei Pei ◽  
Tianxiao Li

Abstract Adaptive management is currently an important method to optimize the management of complex water resources systems. Regional water resources adaptive management was conducted based on the advanced theory of a complex system multi-agent model; the state of an agent was tracked and modified by information entropy theory, which was improved by using individual standard deviations. With the goal of optimizing the adaptation of each agent of the region, water resources in the major grain production area of China were managed under the constraints of the total annual available water resources and water use efficiency requirements for 2015 and 2030. By introducing the adaptive water resources management in 2015, the domestic benefits and economic benefits increased by 2.90% and 14.81%, respectively, with respect to observed values. The ecological benefits declined by 3.63%, but ecological water demand was fully satisfied, and the ecological water environment was improved. Given the water use efficiency targets in 2030, applying adaptive management resulted in an increase of domestic, economic, and ecological benefits of 34.29%, 21.14%, and 1.78%, respectively. The results show that the adaptive management method presented can help managers to balance the benefits of various agents to determine the direction of water resources management decisions.


Soil Research ◽  
2008 ◽  
Vol 46 (8) ◽  
pp. 659 ◽  
Author(s):  
Jin He ◽  
Hongwen Li ◽  
A. D. McHugh ◽  
Zhongmin Ma ◽  
Xinhui Cao ◽  
...  

Permanent raised beds have been proposed as a more productive and water-efficient alternative to the conventional system of flat, flood-irrigated bays for planting narrow-spaced crops in arid north-west China. Data from a field experiment (2005–2007) conducted in the Hexi Corridor at Zhangye, Gansu Province, China, were used to compared the effects of traditional tillage (TT), zero tillage (ZT), and permanent raised beds (PRB) on crop growth, yield, and water use in a spring wheat monoculture. The results show that PRB significantly (P < 0.05) increased soil water content to 0.30 m depth by 7.2–10.7% and soil temperature to 0.05 m depth by 0.2–0.9°C during the wheat-growing period relative to TT and ZT treatments. Bulk density in 0–0.10 m soil layer under PRB was also 5.8% less than for flat planting treatments. Mean wheat yields over 3 years on PRB plots were slightly greater and furrow irrigation in permanent beds was particularly effective in increasing irrigation water use efficiency (~18%), compared with TT and ZT treatments. This increase in water use efficiency is of considerable importance for these arid areas where irrigation water resources are scarce.


2016 ◽  
Vol 199 ◽  
pp. 129-135 ◽  
Author(s):  
Xiao Guoju ◽  
Zhang Qiang ◽  
Zhang Fengju ◽  
Ma Fei ◽  
Wang Jing ◽  
...  

2017 ◽  
Vol 35 (1) ◽  
pp. 275-280
Author(s):  
Hossein Yousefi ◽  
Ali Mohammadi ◽  
Mitra Mirzaaghabeik ◽  
Younes Noorollahi

AbstractShortage of water is considered as one of the most important straits of agricultural development in Iran. The main purpose of this study is to determine virtual water used to pea and bean production and water use efficiency, select the best area for cultivating these two grains and find the virtual water budget for the aforementioned grains. The results showed that among the three provinces main producers of pea in Iran, the highest virtual water of pea belongs to Lorestan with 3534 dm3·kg−1 and the lowest belongs to West Azerbaijan with 2660 dm3·kg−1 in irrigated cultivation. Water use efficiency in irrigated cultivation in Kermanshah and West Azerbaijan are at the same level; however, Kermanshah has enjoyed much more level of virtual water. For beans, the highest amount of virtual water in irrigated cultivation belongs to Lorestan (3651 dm3·kg−1) and the lowest amount refers to Markazi (2725 dm3·kg−1) and also the highest level of water use efficiency for this product refers to Markazi. Also it was found that 160.15 mln m3 of water has been exported from the country water resources by these products so virtual water budget for studied crops were negative.


Sign in / Sign up

Export Citation Format

Share Document