scholarly journals Including Urban Heat Island in Bioclimatic Early-Design Phases: A Simplified Methodology and Sample Applications

2021 ◽  
Vol 13 (11) ◽  
pp. 5918
Author(s):  
Giacomo Chiesa ◽  
Yingyue Li

Urban heat island and urban-driven climate variations are recognized issues and may considerably affect the local climatic potential of free-running technologies. Nevertheless, green design and bioclimatic early-design analyses are generally based on typical rural climate data, without including urban effects. This paper aims to define a simple approach to considering urban shapes and expected effects on local bioclimatic potential indicators to support early-design choices. Furthermore, the proposed approach is based on simplifying urban shapes to simplify analyses in early-design phases. The proposed approach was applied to a sample location (Turin, temperate climate) and five other climate conditions representative of Eurasian climates. The results show that the inclusion of the urban climate dimension considerably reduced rural HDD (heating degree-days) from 10% to 30% and increased CDD (cooling degree-days) from 70% to 95%. The results reveal the importance of including the urban climate dimension in early-design phases, such as building programming in which specific design actions are not yet defined, to support the correct definition of early-design bioclimatic analyses.

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 546
Author(s):  
Andreas Matzarakis

In the era of climate change, before developing and establishing mitigation and adaptation measures that counteract urban heat island (UHI) effects [...]


2021 ◽  
Author(s):  
Yonghong Hu ◽  
Gensuo Jia ◽  
Jinlong Ai ◽  
Yong Zhang ◽  
Meiting Hou ◽  
...  

Abstract Typical urban and rural temperature records are essential for the estimation and comparison of urban heat island effects in different regions, and the key issues are how to identify the typical urban and rural stations. This study tried to analyze the similarity of air temperature sequences by using dynamic time warping algorithm (DTW) to improve the selection of typical stations. We examined the similarity of temperature sequences of 20 stations in Beijing and validated by remote sensing, and the results indicated that DTW algorithm could identify the difference of temperature sequence, and clearly divide them into different groups according to their probability distribution information. The analysis for station pairs with high similarity could provide appropriate classification for typical urban stations (FT, SY, HD, TZ, CY, CP, MTG, BJ, SJS, DX, FS) and typical rural stations (ZT, SDZ, XYL) in Beijing. We also found that some traditional rural stations can’t represent temperature variation in rural surface because of their surrounding environments highly modified by urbanization process in last decades, and they may underestimate the urban climate effect by 1.24℃. DTW algorithm is simple in analysis and application for temperature sequences, and has good potentials in improving urban heat island estimation in regional or global scale by selecting more appropriate temperature records.


Leonardo ◽  
2011 ◽  
Vol 44 (1) ◽  
pp. 64-65
Author(s):  
Drew Hemment ◽  
Carlo Buontempo ◽  
Alfie Dennen

Climate Bubbles was a playful, participatory mass observation project on local climate. Bubble blowing games were devised to enable people across the city of Manchester to test air flow circulation and, by sharing the results online, enabled the Met Office to create a snapshot of the effect the Urban Heat Island has on wind.


2015 ◽  
Vol 23 (3) ◽  
pp. 47-57 ◽  
Author(s):  
Hana Středová ◽  
Tomáš Středa ◽  
Tomáš Litschmann

Abstract Air temperature and humidity conditions were monitored in Hradec Králové, Czech Republic, by a network of meteorological stations. Meteorological sensors were placed across a representative variety of urban and suburban environments. The data collected over the 2011–2014 period are analysed in this paper. The data from reference standard meteorological stations were used for comparison and modelling purposes. Air temperatures at the points of interest were successfully modelled using regression relationships. The spatial expression of point measurements of air temperatures was provided by GIS methods in combination with CORINE land cover layer, and satellite thermal images were used to evaluate the significance of these methods. The use of standard climate information has low priority for urban planners. The impact of the urban heat island on city residents and visitors was evaluated using the HUMIDEX index, as it is more understandable for urban planners than temperature conditions as such. The aim of this paper is the modification, description and presentation of urban climate evaluation methods that are easily useable for spatial planning purposes. These methods are based on comprehensible, easily available but quality data and results. This unified methodology forms a theoretical basis for better urban planning policies to mitigate the urban heat island effects.


2016 ◽  
Vol 65 (2) ◽  
pp. 105-116 ◽  
Author(s):  
Tamás Gál ◽  
Nóra Skarbit ◽  
János Unger

2020 ◽  
Vol 743 ◽  
pp. 140589 ◽  
Author(s):  
Yan Liu ◽  
Qi Li ◽  
Liu Yang ◽  
Kaikai Mu ◽  
Moyan Zhang ◽  
...  

2021 ◽  
Vol 12 (4) ◽  
pp. 1-21
Author(s):  
Bakul Budhiraja ◽  
Prasad Pathak ◽  
Girish Agarwal ◽  
Raja Sengupta

The urban heat island (UHI) effect is one of the prominent impacts of urbanization that affects human health and energy consumption. As the data is limited and inconsistent, UHI comparative studies between UHIUCL and UHISurf on the seasonal scale are limited. The use of only daytime summer imagery reporting “Inverted UHI” undermines the holistic view of the phenomenon. Therefore, this study analyses the seasonal patterns for UHISurf and UHIUCL in three climate zones (Delhi, Pune, and Montreal). The three cities experience a high traditional night-time UHIUCL (Delhi 7°C, Pune 6°C, Montreal 1.89°C). Landsat captures a prominent daytime UHISurf (15°C) in Montreal with temperate climate and daytime inverted UHISurf (-4°C) for Delhi in summer. Seasonally, the night-time UHI is prominent in summer and monsoon for Delhi, summer and spring for Pune, and summer for Montreal. Due to UHI effect, the heatwaves can be more intense in semi-arid and tropical cities than temperate cities.


Sign in / Sign up

Export Citation Format

Share Document