scholarly journals Groundwater Drought Analysis under Data Scarcity: The Case of the Salento Aquifer (Italy)

2022 ◽  
Vol 14 (2) ◽  
pp. 707
Author(s):  
Gabriella Balacco ◽  
Maria Rosaria Alfio ◽  
Maria Dolores Fidelibus

Salento is a regional coastal karst aquifer located in Southern Italy with a highly complex geological, geomorphological, and hydrogeological structure. High and unruly exploitation of groundwater from licensed and unlicensed wells for irrigation and drinking purposes affects groundwater, with consequent degradation of its qualitative and quantitative status. The increased frequency of meteorological droughts and rising temperatures may only worsen the already compromised situation. The absence of complete and enduring monitoring of groundwater levels prevents the application of some methodologies, which require long time series. The analysis of climate indexes to describe the groundwater level variation is a possible approach under data scarcity. However, this approach may not be obvious for complex aquifers (in terms of scale, intrinsic properties, and boundary conditions) where the response of the groundwater to precipitation is not necessarily linear. Thus, the proposed research deals with the assessment of the response of the Salento aquifer to precipitation variability based on correlations between the Standardized Precipitation Index (SPI) and Standardized Precipitation and Evapotranspiration Index (SPEI) and groundwater levels for nine monitoring wells from July 2007 to December 2011. The study aims at evaluating the ability of the above indicators to explain the behavior of groundwater on complex aquifers. Moreover, it has the general aim to verify their more general reliable application. Results of three different correlation factors outline direct and statistically significant correlations between the time series. They describe the Salento aquifer as a slow filter, with a notable inertial behavior in response to meteorological events. The SPI 18-months demonstrates to be a viable candidate to predict the groundwater response to precipitation variability for the Salento aquifer.

2011 ◽  
Vol 8 (6) ◽  
pp. 11277-11313
Author(s):  
E. E. Moreira ◽  
J. T. Mexia ◽  
L. S. Pereira

Abstract. Long time series (95 to 135 yr) of the Standardized Precipitation Index (SPI) computed with the 12-month time scale relative to 10 locations across Portugal were studied with the aim of investigating if drought frequency and severity are changing through time. Considering four drought severity classes, time series of drought class transitions were computed and later divided into 4 or 5 sub-periods according to length of time series. Drought class transitions were calculated to form a 2-dimensional contingency table for each period. Two-dimensional loglinear models were fitted to these contingency tables and an ANOVA-like inference was then performed in order to investigate differences relative to drought class transitions among those sub-periods, which were considered as treatments of only one factor. The application of ANOVA-like inference to these data allowed to compare the four or five sub-periods in terms of probabilities of transition between drought classes, which were used to detect a possible trend in time evolution of droughts frequency and severity that could be related to climate change. Results for a number of locations show some similarity between the first, third and fifth period (or the second and the fourth if there were only 4 sub-periods) regarding the persistency of severe/extreme and sometimes moderate droughts. In global terms, results do not support the assumption of a trend for progressive aggravation of droughts occurrence during the last century, but rather suggest the existence of long duration cycles.


2005 ◽  
Vol 9 (5) ◽  
pp. 523-533 ◽  
Author(s):  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno

Abstract. At present, the Standardized Precipitation Index (SPI) is the most widely used drought index to provide good estimations about the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI in comparison with other indices is the fact that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. It is widely accepted that SPI time scales affect different sub-systems in the hydrological cycle due to the fact that the response of the different water usable sources to precipitation shortages can be very different. The long time scales of SPI are related to hydrological droughts (river flows and reservoir storages). Nevertheless, few analyses empirically verify these statements or the usefulness of the SPI time scales to monitor drought. In this paper, the SPI at different time scales is compared with surface hydrological variables in a big closed basin located in the central Spanish Pyrenees. We provide evidence about the way in which the longer (>12 months) SPI time scales may not be useful for drought quantification in this area. In general, the surface flows respond to short SPI time scales whereas the reservoir storages respond to longer time scales (7–10 months). Nevertheless, important seasonal differences can be identified in the SPI-usable water sources relationships. This suggests that it is necessary to test the drought indices and time scales in relation to their usefulness for monitoring different drought types under different environmental conditions and water demand situations.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1927
Author(s):  
Maria Rosaria Alfio ◽  
Gabriella Balacco ◽  
Alessandro Parisi ◽  
Vincenzo Totaro ◽  
Maria Dolores Fidelibus

Salento peninsula (Southern Italy) hosts a coastal carbonate and karst aquifer. The semi-arid climate is favourable to human settlement and the development of tourism and agricultural activities, which involve high water demand and groundwater exploitation rates, in turn causing groundwater depletion and salinization. In the last decades these issues worsened because of the increased frequency of droughts, which emerges from the analysis of Standardized Precipitation Index (SPI), calculated during 1949–2011 on the base of monthly precipitation. Groundwater level series and chloride concentrations, collected over the extreme drought period 1989–1990, allow a qualitative assessment of groundwater behaviour, highlighting the concurrent groundwater drought and salinization.


2017 ◽  
Vol 21 (5) ◽  
pp. 2421-2448 ◽  
Author(s):  
Johannes Christoph Haas ◽  
Steffen Birk

Abstract. To improve the understanding of how aquifers in different alluvial settings respond to extreme events in a changing environment, we analyze standardized time series of groundwater levels (Standardized Groundwater level Index – SGI), precipitation (Standardized Precipitation Index – SPI), and river stages of three subregions within the catchment of the river Mur (Austria). Using correlation matrices, differences and similarities between the subregions, ranging from the Alpine upstream part of the catchment to its shallow foreland basin, are identified and visualized. Generally, river stages exhibit the highest correlations with groundwater levels, frequently affecting not only the wells closest to the river, but also more distant parts of the alluvial aquifer. As a result, human impacts on the river are transferred to the aquifer, thus affecting the behavior of groundwater levels. Hence, to avoid misinterpretation of groundwater levels in this type of setting, it is important to account for the river and human impacts on it. While the river is a controlling factor in all of the subregions, an influence of precipitation is evident too. Except for deep wells found in an upstream Alpine basin, groundwater levels show the highest correlation with a precipitation accumulation period of 6 months (SPI6). The correlation in the foreland is generally higher than that in the Alpine subregions, thus corresponding to a trend from deeper wells in the Alpine parts of the catchment towards more shallow wells in the foreland. Extreme events are found to affect the aquifer in different ways. As shown with the well-known European 2003 drought and the local 2009 floods, correlations are reduced under flood conditions, but increased under drought. Thus, precipitation, groundwater levels and river stages tend to exhibit uniform behavior under drought conditions, whereas they may show irregular behavior during floods. Similarly, correlations are found to be weaker in years with little snow as compared with those with much snow. This is in agreement with typical aquifer response times over 1 month, suggesting that short events such as floods will not affect much of the aquifer, whereas a long-term event such as a drought or snow-rich winter will. Splitting the time series into periods of 12 years reveals a tendency towards higher correlations in the most recent time period from 1999 to 2010. This time period also shows the highest number of events with SPI values below −2. The SGI values behave in a similar way only in the foreland aquifer, whereas the investigated Alpine aquifers exhibit a contrasting behavior with the highest number of low SGI events in the time before 1986. This is a result of overlying trends and suggests that the groundwater levels within these subregions are more strongly influenced by direct human impacts, e.g., on the river, than by changes in precipitation. Thus, direct human impacts must not be ignored when assessing climate change impacts on alluvial aquifers situated in populated valleys.


2021 ◽  
Vol 3 ◽  
Author(s):  
Hsin-Fu Yeh

In recent years, Taiwan has been facing severe water shortages due to extreme drought. In addition, changes in rainfall patterns have resulted in an increasingly notable drought phenomenon, which affects the management and utilization of water resources. Therefore, this work examines basins in Central Taiwan. Long-term records from 13 rainfall and 17 groundwater stations were selected. The Standardized Precipitation Index (SPI) and Standardized Groundwater Level Index (SGI) were used to analyze the drought characteristics of this region. The rainfall and groundwater level data from basins in Central Taiwan were analyzed in this study. The results show that the year 2015 experienced extreme drought conditions due to a correlation with SPI and SGI signals. In addition, with regard to groundwater drought, more drought events occurred in the Da'an River basin; however, the duration and intensity of these events were relatively low, in contrast to those of the Wu River basin. Finally, the correlation between SPI and SGI was observed to vary in different basins, but a certain degree of correlation was observed in all basins. The results show that drought intensity increases with longer drought durations. Moreover, severe droughts caused by rainfall tend to occur at a greater frequency than those caused by groundwater.


2012 ◽  
Vol 16 (8) ◽  
pp. 3011-3028 ◽  
Author(s):  
E. E. Moreira ◽  
J. T. Mexia ◽  
L. S. Pereira

Abstract. Long time series (95 to 135 yr) of the 12-month time scale Standardized Precipitation Index (SPI) relative to 10 locations across Portugal were studied with the aim of investigating if drought frequency and severity are changing through time. Considering four drought severity classes, time series of drought class transitions were computed and later divided into several sub-periods according to the length of SPI time series. Drought class transitions were calculated to form a 2-dimensional contingency table for each sub-period, which refer to the number of transitions among drought severity classes. Two-dimensional log-linear models were fitted to these contingency tables and an ANOVA-like inference was then performed in order to investigate differences relative to drought class transitions among those sub-periods, which were considered as treatments of only one factor. The application of ANOVA-like inference to these data allowed to compare the sub-periods in terms of probabilities of transition between drought classes, which were used to detect a possible trend in droughts frequency and severity. Results for a number of locations show some similarity between alternate sub-periods and differences between consecutive ones regarding the persistency of severe/extreme and sometimes moderate droughts. In global terms, results do not support the assumption of a trend for progressive aggravation of drought occurrence during the last century, but rather suggest the existence of long duration cycles.


2021 ◽  
Author(s):  
Raoul Collenteur ◽  
Steffen Birk

<p>Groundwater level monitoring is an important way for water resource managers to obtain information on the state of the groundwater system and make informed decisions. In many countries around Europe the right to abstract groundwater (e.g., for drinking water or irrigation purposes) is bound to observed groundwater levels. In particular during and after periods of drought such rights to abstract groundwater may be temporarily denied. As climate change is expected to increase the frequency and intensity of hydrological extremes, severe drought events become more likely, potentially increasing the gap between groundwater demand and supply. An early warning system of a potential groundwater drought could help water managers make informed decisions in advance, to try and counteract the effects of drought. In this study we investigate the use of seasonal forecasts from the ECMWF SEAS5 system to forecast groundwater levels around Europe. The groundwater levels are simulated using a non-linear time series model using impulse response functions as implemented in Pastas (https://github.com/pastas/pastas). Forecasts are compared to groundwater level simulations based on historic meteorological data from the E-OBS database. The methods are tested on 10 long-term (30 years) groundwater level time series. The use of the Standardized Groundwater Index (SGI) is tested to assess the forecast quality and communicate results with decision makers. Bias-correction of the SEAS5 forecasts is found to be necessary to forecast groundwater levels at this local scale. Preliminary results show that the forecast quality depends on the memory effect of the groundwater system, which can be characterized by the auto-correlation of the time series. In addition, it is found that the groundwater levels forecasts have smaller ranges in spring then in the winter months. This may be explained by the fact that groundwater levels in spring are more dependent on evaporation than on precipitation and that forecast of the first are better than those of the latter. The results from this study may be used to improve early warning systems that forecast groundwater droughts.</p>


2017 ◽  
Vol 98 (4) ◽  
pp. 753-766 ◽  
Author(s):  
Paul A. Conrads ◽  
Lisa S. Darby

Abstract A critical aspect of the uniqueness of coastal drought is the effects on the salinity dynamics of creeks, rivers, and estuaries. The location of the freshwater–saltwater interface along the coast is an important factor in the ecological and socioeconomic dynamics of coastal communities. Salinity is a critical response variable that integrates hydrologic and coastal dynamics including sea level, tides, winds, precipitation, streamflow, and tropical storms. The position of the interface determines the composition of freshwater and saltwater aquatic communities as well as the freshwater availability for water intakes. Many definitions of drought have been proposed, with most describing a decline in precipitation having negative impacts on the water supply. Indices have been developed incorporating data such as rainfall, streamflow, soil moisture, and groundwater levels. These water-availability drought indices were developed for upland areas and may not be ideal for characterizing coastal drought. The availability of real-time and historical salinity datasets provides an opportunity for the development of a salinity-based coastal drought index. An approach similar to the standardized precipitation index (SPI) was modified and applied to salinity data obtained from sites in South Carolina and Georgia. Using the SPI approach, the index becomes a coastal salinity index (CSI) that characterizes coastal salinity conditions with respect to drought periods of higher-saline conditions and wet periods of higher-freshwater conditions. Evaluation of the CSI indicates that it provides additional coastal response information as compared to the SPI and the Palmer hydrologic drought index, and the CSI can be used for different estuary types and for comparison of conditions along coastlines.


2005 ◽  
Vol 2 (4) ◽  
pp. 1221-1246 ◽  
Author(s):  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno

Abstract. At present, the Standardized Precipitation Index (SPI) is the most widely used drought index to provide good estimations about the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI in comparison with other indices is the fact that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. It is widely accepted that SPI time scales affect different sub-systems in the hydrological cycle due to the fact that the response of the different water usable sources to precipitation shortages can be very different. The long time scales of SPI are related to hydrological droughts (river flows and reservoir storages). Nevertheless, few analyses empirically verify these statements or the usefulness of the SPI time scales to monitor drought. In this paper, the SPI at different time scales is compared with surface hydrological variables in a big closed basin located in the central Spanish Pyrenees. We provide evidence about the way in which the higher (>12 months) SPI time scales may not be useful for drought quantification in this area. In general, the surface flows respond to short SPI time scales whereas the reservoir storages respond to higher time scales (7–10 months). Nevertheless, important seasonal differences can be identified in the SPI-usable water sources relationships. This suggests that it is necessary to test the drought indices and time scales in relation to their usefulness for monitoring different drought types under different environmental conditions and water demand situations.


Sign in / Sign up

Export Citation Format

Share Document