salinity data
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 38)

H-INDEX

21
(FIVE YEARS 2)

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 126
Author(s):  
Juan Herrero ◽  
Carmen Castañeda ◽  
Rosa Gómez-Báguena

This article presents and reviews the soil salinity data provided by a rescued vintage agronomic report on an irrigated area of 35,875 ha located in the center of the Ebro River basin, in the NE of mainland Spain. These data come from a soil sampling campaign conducted from May to the first half of July 1975 for the purpose of delineating saline and non-saline soils. The agronomic report was produced in response to demands from farmers to combat soil salinity, and represents the state of the art in those years for salinity studies. Our paper presents the scrubbed soil salinity data for this year, checking their consistency and locating the study sites. The main finding is the unearthing of this heritage report and the discussion of its soil salinity data. We show that the report supplies an assessment and a baseline for further soil salinity tracking by conducting new measurements either by direct soil sampling or by nondestructive techniques, providing an estimate of soil salinity at different locations. This task is feasible, as shown in our previously published articles involving nearby areas. A comparison of the salt amount in the soil over the years would provide a means to evaluate irrigation methods for sustainable land management. This comparison can be conducted simultaneously with analysis of other agricultural features described in the report for the irrigation district in 1975.


MAUSAM ◽  
2021 ◽  
Vol 51 (4) ◽  
pp. 329-348
Author(s):  
C. SHAJI ◽  
A. D. RAO ◽  
S. K. DUBE ◽  
N. BAHULAYAN

The seasonal mean climatological circulation in the Indian Ocean north of 20°S and west of 80°E during the summer and winter has been investigated using a 3-dimensional, fully non-linear, semi-diagnostic circulation model. The model equations include the basic ocean hydrothermodynamic  equations of momentum, hydrostatics, continuity, sea surface topography and temperature and salt transport equations. Model is driven with the seasonal mean data on wind stress at the ocean surface and thermohaline forcing at different levels. The circulation in the upper levels of the ocean at 20, 50, 150, 300, 500 and 1000 m depths during the two contrasting seasons has been obtained using the model, and the role of steady, local forcing of wind and internal density field on the dynamical balance of circulation in the western tropical Indian Ocean is explained. The climatological temperature and salinity data used to drive the model is found to be hydrodynamically adjusted with surface wind, flow field and bottom relief during the adaptation stages. Semi-diagnostic technique is found to be very effective for the smoothening of climatic temperature and salinity data and also to obtain the 3-dimensional steady state circulation, which would serve as initial condition in simulation models of circulation.


2021 ◽  
Vol 937 (3) ◽  
pp. 032013
Author(s):  
D Krivoguz ◽  
A Semenova ◽  
S Mal’ko

Abstract Sea water temperature and water salinity one of the most important environmental factors of the marine ecosystems. Both of them plays an important role in forming suitable environment for marine living organisms and have a great impact on species biodiversity. Our goal for this paper was to identify spatial patterns of interannual variations in the salinity and temperature fluctuations to understand possibilities of future change of the Black Sea ecosystem and its impact on fisheries. We used temperature and salinity data from CMEMS for the 1992-2017 time period. All downloaded data was processed by QGIS 3.14 and R 4.0.3. We found that the temperature regime of the Black Sea in different periods of the year is determined by three main factors - the depth of the shelf zone, the influence of river runoff, and water circulation due to currents. The average salinity of the Black Sea waters is 19 ‰, areas with lower salinity are located near the west shore, due to the flows from the largest rivers (Dnieper, Dniester, Danube) bringing a large amount of fresh water to the Black Sea. The area with higher salinity is located in the south- west due to the water exchange of the Black Sea with the saltier Sea of Marmara (∼ 26 ‰) through the Bosphorus. The currents of the Black Sea pick up the salty water of the Sea of Marmara and slowly moving the water column against the clockwise, carry it across the entire Black Sea, thereby increasing its average salinity.


2021 ◽  
Author(s):  
Kandasamy Priyanka ◽  
Ranjit Kumar Sarangi ◽  
Ramalingam Shanthi ◽  
Durairaj Poornima ◽  
Ayyappan Saravanakumar

Abstract A spatial and temporal variation of sea surface salinity (SSS) is vital to understand the dynamics of the seasonal and inter-annual changes in the marine environment. In the present study, Soil Moisture Active-Passive (SMAP) derived daily SSS product and Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua) remote sensing reflectance (Rrs) based SSS images (Algorithm by Qing et al, 2013), applied in the coastal and offshore region of the Bay of Bengal (BoB). SMAP data validation with in situ data (offshore and coastal water, 10 and 15 points) showed good correlation at offshore water and less correlation at coastal water (R2 = 0.707/0.499, SEE = ± 0.291/±0.546, MNB = -0.0029/-0.0089 and RMSE = ± 0.092/±0.139) respectively. Similarly, MODIS-Aqua Rrs derived salinity data validated with in-situ SSS and observed the correlation as follows with R2 = 0.908/0.891, SEE = ± 2.395/±1.512, MNB = 0.0718/0.0361, RMSE = ± 0.760/±0.316 in offshore and coastal water respectively during April and August 2019. The salinity data observed in the range of 32 to 34.5psu. High SSS mean (35.6-35.8psu) observed during the spring inter-monsoon and low salinity (34.6-34.9psu) observed during winter monsoon phase as depicted from decadal scale interpretation. The present study inferred that MODIS aqua derived SSS is better than SMAP based SSS at coastal and offshore region of the western BoB, irrespective of their resolution and spectral differences. More data points based validation would provide the scope for further improvements and seasonal studies on salinity variability using ocean color sensors reflectance based datasets.


2021 ◽  
Vol 13 (22) ◽  
pp. 4600
Author(s):  
Sébastien Guimbard ◽  
Nicolas Reul ◽  
Roberto Sabia ◽  
Sylvain Herlédan ◽  
Ziad El Khoury Hanna ◽  
...  

The Pilot-Mission Exploitation Platform (Pi-MEP) for salinity is an ESA initiative originally meant to support and widen the uptake of Soil Moisture and Ocean Salinity (SMOS) mission data over the ocean. Starting in 2017, the project aims at setting up a computational web-based platform focusing on satellite sea surface salinity data, supporting studies on enhanced validation and scientific process over the ocean. It has been designed in close collaboration with a dedicated science advisory group in order to achieve three main objectives: gathering all the data required to exploit satellite sea surface salinity data, systematically producing a wide range of metrics for comparing and monitoring sea surface salinity products’ quality, and providing user-friendly tools to explore, visualize and exploit both the collected products and the results of the automated analyses. The Salinity Pi-MEP is becoming a reference hub for the validation of satellite sea surface salinity missions by providing valuable information on satellite products (SMOS, Aquarius, SMAP), an extensive in situ database (e.g., Argo, thermosalinographs, moorings, drifters) and additional thematic datasets (precipitation, evaporation, currents, sea level anomalies, sea surface temperature, etc.). Co-localized databases between satellite products and in situ datasets are systematically generated together with validation analysis reports for 30 predefined regions. The data and reports are made fully accessible through the web interface of the platform. The datasets, validation metrics and tools (automatic, user-driven) of the platform are described in detail in this paper. Several dedicated scienctific case studies involving satellite SSS data are also systematically monitored by the platform, including major river plumes, mesoscale signatures in boundary currents, high latitudes, semi-enclosed seas, and the high-precipitation region of the eastern tropical Pacific. Since 2019, a partnership in the Salinity Pi-MEP project has been agreed between ESA and NASA to enlarge focus to encompass the entire set of satellite salinity sensors. The two agencies are now working together to widen the platform features on several technical aspects, such as triple-collocation software implementation, additional match-up collocation criteria and sustained exploitation of data from the SPURS campaigns.


2021 ◽  
Author(s):  
◽  
Keleigh Ann Jones

<p>As an inhomogeneous mixture of pure ice, brine, air and solid salts the physical properties of sea ice depend on its highly temperature-dependent microstructure. Understanding the microstructure and the way it responds to variations in temperature and salinity is crucial in developing an improved understanding of the interaction between sea ice and the environment. However, measurements monitoring the microstructure of sea ice are difficult to obtain without disturbing its natural state. The brine fraction of sea ice is orders of magnitude more conductive than the solid ice, thus direct current resistivity techniques should yield information on sea ice microstructure. Due to the preferential vertical alignment of brine inclusions, the bulk resistivity of first-year sea ice is anisotropic, complicating interpretation of surface resistivity soundings. However, it can be shown that in a bounded anisotropic medium the resistivity structure may be resolved through in situ cross-borehole measurements. Measurement between borehole pairs, each containing one current and one potential electrode, allows the determination of the horizontal component of the anisotropic bulk resistivity (PH). Using three to four electrodes positioned at approximately the same depth in separate boreholes, provides an under-estimation of the geometric mean resistivity (Pm), and numerical modelling is required to retrieve an estimate of the true Pm. Combining these resistivities allows calculation of the vertical component of the bulk resistivity (PV). This thesis looks at results from measurements made in first year sea ice in April – June 2008 off Barrow, Alaska and in November 2009 off Ross Island, Antarctica. At Barrow, relatively quiescent conditions typically lead to a predominance of columnar ice, while more turbulent conditions and underwater ice formation in McMurdo Sound tend to produce a larger component of frazil or platelet ice. Interpretation of the resistivity measurements, aided by temperature and salinity data, shows that this measurement technique can be used to observe evolution of the ice structure, and distinguish different ice types. Basic two phase structures provide a simple picture of the brine microstructure and how it changes with depth and time. These models indicate the need for vertical connectivity of the brine inclusions even in cool ice, and that PH seems to be mostly due to connections along grain boundaries.</p>


2021 ◽  
Author(s):  
◽  
Keleigh Ann Jones

<p>As an inhomogeneous mixture of pure ice, brine, air and solid salts the physical properties of sea ice depend on its highly temperature-dependent microstructure. Understanding the microstructure and the way it responds to variations in temperature and salinity is crucial in developing an improved understanding of the interaction between sea ice and the environment. However, measurements monitoring the microstructure of sea ice are difficult to obtain without disturbing its natural state. The brine fraction of sea ice is orders of magnitude more conductive than the solid ice, thus direct current resistivity techniques should yield information on sea ice microstructure. Due to the preferential vertical alignment of brine inclusions, the bulk resistivity of first-year sea ice is anisotropic, complicating interpretation of surface resistivity soundings. However, it can be shown that in a bounded anisotropic medium the resistivity structure may be resolved through in situ cross-borehole measurements. Measurement between borehole pairs, each containing one current and one potential electrode, allows the determination of the horizontal component of the anisotropic bulk resistivity (PH). Using three to four electrodes positioned at approximately the same depth in separate boreholes, provides an under-estimation of the geometric mean resistivity (Pm), and numerical modelling is required to retrieve an estimate of the true Pm. Combining these resistivities allows calculation of the vertical component of the bulk resistivity (PV). This thesis looks at results from measurements made in first year sea ice in April – June 2008 off Barrow, Alaska and in November 2009 off Ross Island, Antarctica. At Barrow, relatively quiescent conditions typically lead to a predominance of columnar ice, while more turbulent conditions and underwater ice formation in McMurdo Sound tend to produce a larger component of frazil or platelet ice. Interpretation of the resistivity measurements, aided by temperature and salinity data, shows that this measurement technique can be used to observe evolution of the ice structure, and distinguish different ice types. Basic two phase structures provide a simple picture of the brine microstructure and how it changes with depth and time. These models indicate the need for vertical connectivity of the brine inclusions even in cool ice, and that PH seems to be mostly due to connections along grain boundaries.</p>


2021 ◽  
Author(s):  
Nathan Paldor ◽  
Ofer Shamir ◽  
Andreas Münchow ◽  
Albert D. Kirwan Jr.

Abstract. Here we use a new analysis schema, the Freshening Length, to study the transport in the Irminger Current on the east and west sides of Greenland. The Freshening Length schema relates the transports on either side of Greenland to the corresponding surface salinity gradients by analyzing climatological data from a data assimilating global ocean model. Surprisingly, the warm and salty waters of the Current are clearly identified by a salinity maximum that varies nearly linearly with distance along the Current’s axis. Our analysis of the climatological salinity data based on the Freshening Length schema shows that only about 20 % of the transport east of Greenland navigates the southern tip of Greenland to enter the Labrador Sea in the west. The other 80 % disperses into the ambient ocean. This independent quantitative estimate based on a 37-year long record complements seasonal to annual field campaigns that studied the connection between the seas east and west of Greenland more synoptically. A temperature-salinity analysis shows that the Irminger Current east of Greenland is characterized by a compensating isopycnal exchange of temperature and salinity, while west of Greenland the horizontal convergence of less dense surface water is accompanied by downwelling/subduction.


2021 ◽  
Vol 925 (1) ◽  
pp. 012011
Author(s):  
J S Hamonangan ◽  
IP Anwar ◽  
M Irfan ◽  
O Moefti ◽  
D L Rolian

Abstract The Indonesia Continental Shelf (LKI) expedition was held during September - October 2020. During the survey, there were ten Conductivity Temperature Depth (CTD) measurement stations that located extending from the west of Mentawai Island to the Indian Ocean. In this study, two-line of subsurface temperature, salinity, and density data were plotted longitudinally. The results show the unique feature between the open ocean and coastal area, the characteristic from open ocean did not affect the characteristic in coastal zone, it is shown from the salinity data. The maximum salinity found in the thermocline layer, between 100-150 m in both of line. The salinity increases from the surface until the thermocline, then slightly decreases to the deep layer. The surface salinity in the coastal area significantly different from the open ocean, it is less than 34 PSU. That is the fact that Wyrtki Jet current did not induce the open ocean water to the coastal water in the subsurface. Otherwise, the temperature and density have a similar pattern with range values around 9-31°C.


2021 ◽  
Author(s):  
Callum Rollo ◽  
Karen J. Heywood ◽  
Rob A. Hall

Abstract. Thermohaline staircases are stepped structures of alternating thick mixed layers and thin high gradient interfaces. These structures can be up to several tens of metres thick and are associated with double-diffusive mixing. Thermohaline staircases occur across broad swathes of the Arctic and tropical/subtropical oceans and can increase rates of diapycnal mixing by up to five times the background rate, driving substantial nutrient fluxes to the upper ocean. In this study, we present an improved classification algorithm to detect thermohaline staircases in ocean glider profiles. We use a dataset of 1162 glider profiles from the tropical North Atlantic collected in early 2020 at the edge of a known thermohaline staircase region. The algorithm identifies thermohaline staircases in 97.7 % of profiles that extend deeper than 300 m. We validate our algorithm against previous results obtained from algorithmic classification of Argo float profiles. Using fine resolution temperature data from a fast-response thermistor on one of the gliders, we explore the effect of varying vertical bin sizes on detected thermohaline staircases. Our algorithm builds on previous work with improved flexibility and the ability to classify staircases from profiles with poor salinity data. Using our results, we propose that the incidence of thermohaline staircases is limited by strong background vertical gradients in conservative temperature and absolute salinity.


Sign in / Sign up

Export Citation Format

Share Document