aquatic communities
Recently Published Documents


TOTAL DOCUMENTS

389
(FIVE YEARS 102)

H-INDEX

40
(FIVE YEARS 4)

Our Nature ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 18-26
Author(s):  
Sushil Shrestha ◽  
Dipak Rajbanshi ◽  
Dil Kumar Limbu ◽  
Jash Hang Limbu

The Lohore River is one of the important riverine ecosystems of Dailekh which support diverse aquatic communities. The present study was carried out to assess the fish diversity status with relation to environmental conditions in both to space and time. The survey was conducted at three different sampling stations in three different seasons. For the fish sampling, two cast nets of different mesh sizes were used, one having large mesh size of 2 cm, 6 m diameter and 6 kg weight and another having mesh size of 0.5 cm, 3 m diameter and 2 kg weight. Moreover, drag net and gill net were also used to collect the fish samples. A total of 11 fish species belonging to 2 orders, 3 families and 7 genera. Results from the similarity percentage analysis (SIMPER) suggested that fish species of Puntius gelius, Schizothorax plagiostomus, Tor chelynoides and Schistura sovana were major contributing species each contribute more than 9%. An analysis of similarity (ANOSIM) pointed that fish community structure in the Lohore River differ in spatial scale (p<0.01) but not in temporal scale (P>0.01). Water temperature, dissolved oxygen and water velocity was found as influential factors for fish species distribution.


2021 ◽  
Author(s):  
Hiromi Uno ◽  
Mizushi Yokoi ◽  
Keitaro Fukushima ◽  
Yoichiro Kanno ◽  
Osamu Kishida ◽  
...  

Author(s):  
Cristiana Rizzi ◽  
Sara Villa ◽  
Alessandro Cuzzeri ◽  
Antonio Finizio

The species sensitivity distribution (SSD) calculates the hazardous concentration at which 5% of species (HC5) will be potentially affected. For many compounds, HC5 values are unavailable impeding the derivation of SSD curves. Through a detailed bibliographic survey, we selected HC5 values (from acute toxicity tests) for freshwater aquatic species and 129 pesticides. The statistical distribution and variability of the HC5 values within the chemical classes were evaluated. Insecticides are the most toxic compounds in the aquatic communities (HC5 = 1.4x10−03 µmol L−1), followed by herbicides (HC5 = 3.3 x10−2 µmol L−1) and fungicides (HC5 = 7.8 µmol L−1). Subsequently, the specificity of the mode of action (MoA) of pesticides on freshwater aquatic communities was investigated by calculating the ratio between the estimated baseline toxicity for aquatic communities and the HC5 experimental values gathered from the literature. Moreover, we proposed and validated a scheme to derive the ecological thresholds of toxicological concern (eco-TTC) of pesticides for which data on their effects on aquatic communities are not available. We proposed eco-TTCs for different classes of insecticides, herbicides, and fungicides with a specific MoA, and three eco-TTCs for those chemicals with unavailable MoA. We consider the proposed approach and eco-TTC values useful for risk management purposes.


2021 ◽  
Author(s):  
Beáta Szabó ◽  
Attila Szabó ◽  
Csaba F Vad ◽  
Emil Boros ◽  
Dunja Lukić ◽  
...  

Aim: Waterbirds are important dispersal vectors of multicellular organisms such as macrophytes, aquatic macroinvertebrates, and zooplankton. However, no study to date has focused on their potential role in dispersing aquatic microbial communities. Here, we carried out the first explicit study on passive transport (endozoochory) of prokaryotes and unicellular microeukaryotes by waterbirds based on a metagenomic approach. By directly comparing the dispersed set of organisms to the source pool of a natural metacommunity, we aimed for a realistic estimate of the overall importance of waterbird zoochory for natural microbial communities. Location: Seewinkel region of Austria and Hungary. Taxon: Prokaryotes and unicellular microeukaryotes. Methods: In 2017 and 2018, water samples from natural aquatic habitats along with fresh droppings of the dominant greylag goose (Anser anser) and four other waterbird species were collected in a well-delineated habitat network of temporary saline ponds (soda pans). Their prokaryotic and microeukaryotic communities were identified via 16S and 18S rRNA gene amplicon sequencing and compared across years and waterbird species. Results: We found that up to 40% of the dominant aquatic microbial OTUs were transported by A. anser. OTU richness in A. anser droppings was lower, but compositional variation was higher compared to the aquatic communities, probably resulting from stochastic pick-up of microbes from multiple aquatic habitats. We furthermore found that prokaryote species composition of bird droppings followed the interannual turnover in the aquatic communities. Finally, we found species-specific differences among different waterbird species. Among them, the planktivore filter-feeder northern shovelers (Anas clypeata) collected and dispersed a more species-rich subset of microeukaryotes than shorebirds or geese. Main conclusions: Overall, our study provides the first quantitative empirical evidence of endozoochory in natural microorganism communities. These results imply that waterbirds may be crucial in maintaining ecological connectivity between discrete aquatic habitats at the level of microbial communities. Keywords: aquatic microorganisms, bacteria, connectivity, dispersal, endozoochory, phytoplankton, protists, waterbirds


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Hwee Sze Tee ◽  
David Waite ◽  
Gavin Lear ◽  
Kim Marie Handley

Abstract Background Coastal aquatic ecosystems include chemically distinct, but highly interconnected environments. Across a freshwater-to-marine transect, aquatic communities are exposed to large variations in salinity and nutrient availability as tidal cycles create periodic fluctuations in local conditions. These factors are predicted to strongly influence the resident microbial community structure and functioning, and alter the structure of aquatic food webs and biogeochemical cycles. Nevertheless, little is known about the spatial distribution of metabolic properties across salinity gradients, and no study has simultaneously surveyed the sediment and water environments. Here, we determined patterns and drivers of benthic and planktonic prokaryotic and microeukaryotic community assembly across a river and tidal lagoon system by collecting sediments and planktonic biomass at nine shallow subtidal sites in the summer. Genomic and transcriptomic analyses, alongside a suite of complementary geochemical data, were used to determine patterns in the distribution of taxa, mechanisms of salt tolerance, and nutrient cycling. Results Taxonomic and metabolic profiles related to salt tolerance and nutrient cycling of the aquatic microbiome were found to decrease in similarity with increasing salinity, and distinct trends in diversity were observed between the water column and sediment. Non-saline and saline communities adopted divergent strategies for osmoregulation, with an increase in osmoregulation-related transcript expression as salinity increased in the water column due to lineage-specific adaptations to salt tolerance. Results indicated a transition from phosphate limitation in freshwater habitats to nutrient-rich conditions in the brackish zone, where distinct carbon, nitrogen and sulfur cycling processes dominated. Phosphorus acquisition-related activity was highest in the freshwater zone, along with dissimilatory nitrate reduction to ammonium in freshwater sediment. Activity associated with denitrification, sulfur metabolism and photosynthesis were instead highest in the brackish zone, where photosynthesis was dominated by distinct microeukaryotes in water (Cryptophyta) and sediment (diatoms). Despite microeukaryotes and archaea being rare relative to bacteria, results indicate that they contributed more to photosynthesis and ammonia oxidation, respectively. Conclusions Our study demonstrates clear freshwater–saline and sediment–water ecosystem boundaries in an interconnected coastal aquatic system and provides a framework for understanding the relative importance of salinity, planktonic-versus-benthic habitats and nutrient availability in shaping aquatic microbial metabolic processes, particularly in tidal lagoon systems.


2021 ◽  
Author(s):  
Ariane L Peralta ◽  
Mario E Muscarella ◽  
Alexandra Stucy ◽  
Jo A Werba ◽  
Michael W McCoy

Climate change induced salinization events are predicted to intensify and lead to increased salt stress in freshwater aquatic ecosystems. As a consequence, formerly distinct abiotic conditions and associated biotic communities merge, and the emergence, loss, and persistence of microbial taxa modify the types and rates of ecosystem processes. This study examined how bacterial taxonomic and phylogenetic diversity and ecosystem function respond to acute salinization events where freshwater and estuarine communities and environments coalesce. We hypothesize that if the salinity change outpaces microbial adaptation or saline microbial populations are not yet established in formerly freshwater conditions, then we predict diminished carbon cycling rates, decreased microbial diversity, and altered the composition of microbial communities compared to historically freshwater communities. We used an experimental mesocosm approach to determine how salinity and the merging of distinct communities influenced resultant bacterial community structure and function. Each mesocosm represented different salinities (0, 5, 9, 13 psu). Two dispersal treatments, representing aquatic communities sourced from brackish 13 psu ponds and a mix of 13 psu and freshwater ponds, were added to all salinity levels and replicated four times. Results revealed that salinity, but not dispersal, decreased bacterial taxonomic and phylogenetic diversity. Carbon mineralization rates were highest in freshwater conditions and associated with low relative abundance indicator taxa. Acute salinity changes, such as localized flooding due to storm surge, will more negatively affect freshwater aquatic communities compared to chronic exposure to salinization where the communities have had time to adapt or turnover resulting in recovered biogeochemical functions.


2021 ◽  
Author(s):  
Erica L. Johnson ◽  
Erin F. Abernethy ◽  
J. Checo Colón-Gaud

Abstract Floodplains of the southeastern United States exhibit high biological productivity, maintained by periodic floodplain inundation as a result of seasonal flooding. To examine the relationship between biological productivity and seasonal flooding following periods of drought, we quantified aquatic macroinvertebrate communities monthly in an inundated floodplain during the annual flood pulse (December-April) in two years, one following a multi-year drought and one following a larger than average flooding event. We predicted that floodplain communities would differ in richness, biomass, and community composition between years and that differences would be driven by discharge at the main stem and organic matter availability. We collected macroinvertebrates from the floodplain of the Altamaha River, an unimpounded 6th order river in the Coastal Plain region of the southeastern US that experiences floodplain connectivity. With invertebrates identified to genus, we elucidated richness, abundance, biomass, community composition, and functional feeding group. Richness was generally higher in the drought year but decreased throughout the flood pulse, while during the flood year richness was lower and increased. Biomass decreased throughout the flood pulse following the drought year and increased during the flood year. There was a high degree of overlap in invertebrate community composition based on abundance data during both years of the study with collector gatherers being the most highly abundant functional feeding group. As climate change impacts (i.e., severe droughts) become more common, it is critical to investigate how aquatic communities are responding to increasingly unpredictable flow conditions in unimpounded and seemingly unaltered rivers.


2021 ◽  
Author(s):  
Dorel Ureche ◽  
◽  
Camelia Ureche ◽  

The researches were carried out in 2020 on the main course of Bistrița River, upstream the confluence with Siret River. The biological material was sampled in 10 sampling sites placed on the main course of Bistrița River. Seventeen fish species were identified, one of them being a non-native one: Pseudorasbora parva. We found that the chub and the Prussian carp are characteristic species. Species diversity is quite high, being identified even 12 fish species in some of the sampling sites. There is an unequal distribution of individuals by species. The main threats in the research area are the organic inputs and the increase of turbidity. However, there are no great imbalances, and there is a good capacity for self-support of aquatic communities.


Sign in / Sign up

Export Citation Format

Share Document