scholarly journals Removing Simultaneously Sulfur and Nitrogen from Fuel under a Sustainable Oxidative Catalytic System

2021 ◽  
Vol 2 (2) ◽  
pp. 382-391
Author(s):  
Dinis F. Silva ◽  
Alexandre M. Viana ◽  
Fátima Mirante ◽  
Baltazar de Castro ◽  
Luís Cunha-Silva ◽  
...  

An effective process to remove nitrogen-based compounds from fossil fuels without harming the process of sulfur removal is an actual gap in refineries. A success combination of desulfurization and denitrogenation processes capable of completely removing the most environmental contaminates in diesel under sustainable conditions was achieved in this work, applying polyoxometalates as catalysts, hydrogen peroxide as oxidant, and an immiscible ionic liquid as an extraction solvent. The developed process based in simultaneous oxidative desulfurization (ODS) and oxidative denitrogenation (ODN) involved initial extraction of sulfur and nitrogen compounds followed by catalytic oxidation. Keggin-type polyoxomolybdates revealed much higher reusing capacity than the related polyoxotungstate. Effectively, the first catalysts practically allowed complete sulfur and nitrogen removal only in 1 h of reaction and for ten consecutive cycles, maintaining the original catalyst and ionic liquid samples.

2018 ◽  
Vol 452 ◽  
pp. 93-99 ◽  
Author(s):  
Xuhe Li ◽  
Jian Zhang ◽  
Feng Zhou ◽  
Yanjuan Wang ◽  
Xingzhou Yuan ◽  
...  

2014 ◽  
Vol 699 ◽  
pp. 210-214 ◽  
Author(s):  
Hayyiratul Fatimah Mohd Zaid ◽  
Chong Fai Kait ◽  
Muhammad Ibrahim Abdul Mutalib

Titanium dioxide (TiO2) photocatalyts doped with copper metal at different metal loadings were successfully prepared and characterized. Photocatalytic oxidative desulfurization of model oil containing dibenzothiophene as the sulfur compound (100 ppm) was investigated using the prepared photocatalyst. The photocatalyst with 2.0 wt% Cu metal loading showed the best sulfur removal at 66.25%.


KIMIKA ◽  
2013 ◽  
Vol 24 (1) ◽  
pp. 2-7
Author(s):  
Harold Henrison C. Chiu ◽  
Susan D. Arco ◽  
Zhang Chun Ping ◽  
Nelson R. Villarante

The oxidative desulfurization of model oil (hexane solution of thiophene) was carried out at room temperature in a two-step method involving: 1) the acetic acid catalyzed oxidation of thiophene with hydrogen peroxide and 2) the subsequent extraction of the oxidized products with  three  1-alkyl-3-methylimidazolium  bromide  [RMIM]Br  ionic  liquids  of  varying  alkyl substituent R chain length  (R: C2, C4,  C6) and with acetonitrile as control. For purposes of comparison,  a  non-oxidative  extractive  desulfurization  of  model  oil  with  the  above  ionic liquid and with acetonitrile was also performed.  The thiophene extraction efficiencies of the ionic liquids and that of the control in both the oxidative and non-oxidative procedures were determined  by  means  of  gas  chromatography.  The  ionic  liquid  of  the  shortest  alkyl substituent chain length (R: C2), [EMIM] Br exhibited the highest extraction efficiency in the oxidative desulfurization of the model  oil; the extraction efficiency of [EMIM] Br was also observed  to  exceed  that  of  acetonitrile.  In  general,  the  oxidative  desulfurization  with  the above [RMIM]Br’s is apparently a more efficient method of thiophene removal from the model oil as compared to a non-oxidative procedure with the same extraction solvents. The extraction efficiency of [RMIM]Br’s was observed to decrease with the lengthening of the alkyl  substituent  chain.  The  same  trend  is  observed  in  the  non-oxidative  extractive desulfurization of the model oil. Recyclability analysis of [EMIM]Br showed that [EMIM]Br can be recycled thrice with no significant decrease in extraction efficiency.


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 639 ◽  
Author(s):  
Yunlei Li ◽  
Yanjie Zhang ◽  
Panfeng Wu ◽  
Caiting Feng ◽  
Ganglin Xue

Polyoxometalates based ionic liquids (POM-ILs) exhibit a high catalytic activity in oxidative desulfurization. In this paper, four new POM-IL hybrids based on transition metal mono-substituted Keggin-type phosphomolybdates, [Bmim]5[PMo11M(H2O)O39] (Bmim = 1-butyl 3-methyl imidazolium; M = Co2+, Ni2+, Zn2+, and Mn2+), have been synthesized and used as catalysts for the oxidation/extractive desulfurization of model oil, in which ILs are used as the extraction solvent and H2O2 as an oxidant under very mild conditions. The factors that affected the desulfurization efficiency were studied and the optimal reaction conditions were obtained. The results showed that the [Bmim]5[PMo11Co(H2O)O39] catalyst demonstrated the best catalytic activity, with sulfur-removal of 99.8%, 85%, and 63% for dibenzothiophene (DBT), 4,6-dimethyldibenzothiophene (4,6-DMDBT), and benzothiophene (BT), respectively, in the case of extraction combining with a oxidative desulfurization system under optimal reaction conditions (5 mL model oil (S content 500 ppm), n(catalyst) = 4 μmol, n(H2O2)/n(Substrate) = 5, T = 50 °C for 60 min with [Omim]BF4 (1 mL) as the extractant). The catalyst can be recycled at least 8 times, and still has stability and high catalytic activity for consecutive desulfurization. Probable reaction mechanisms have been proposed for catalytic oxidative/extractive desulfurization.


2014 ◽  
Vol 1033-1034 ◽  
pp. 65-69
Author(s):  
Min Wang ◽  
Qin Wu ◽  
Han Sheng Li ◽  
Yun Zhao ◽  
Qing Ze Jiao

A polyoxometalate-based ionic liquid, 1-(4-sulfonic acid) methylimidazolium phosphotungstate ([MIMBS]3PW12O40), was synthesized and characterized by Fourier transform infrared spectrum, nuclear magnetic resonance, electrospray ionization mass spectrum and thermogravimetric analyzer. [MIMBS]3PW12O40exhibited high activity for the extractive catalytic oxidative desulfurization process, together with H2O2and CH3CN/H2O. The sulfur removal of DBT could reach 99.9% under wild conditions, and the catalyst could be used three times with only a slight decline in activity.


2010 ◽  
Vol 24 (4) ◽  
pp. 2527-2529 ◽  
Author(s):  
Jianlong Wang ◽  
Dishun Zhao ◽  
Kaixi Li

Author(s):  
Fang Wang ◽  
Guangjian Wang ◽  
Liancheng Bing ◽  
Yong Wang ◽  
Aixiu Tian ◽  
...  

AbstractAg modified mesoporous molecular sieves Ti-HMS were prepared by in-situ synthesis (Ag/Ti-HMS-I), deposition-precipitation method (Ag/Ti-HMS-D) and ultrasound-assisted impregnation methods (Ag/Ti-HMS-U), respectively. The catalytic performance of catalysts in the oxidative desulfurization(ODS) of benzothiophene with hydrogen peroxide (H2O2) has been investigated. The physicochemical properties of the catalysts were characterized by XRD, SEM, BET and FT-IR techniques. Experimental results showed that the catalyst Ag/Ti-HMS-U exhibited the best catalytic activity, and this maybe because the catalyst possessed relatively good mesoporous structure and high Ag dispersion. Under the best operating condition for the catalytic oxidative desulfurization: temperature 60 °C, atmospheric pressure, 0.1 g catalysts, 8 molar ratio of hydrogen peroxide to sulfur, using acetonitrile as extraction solvent for double extraction, the sulfur content in model diesel fuel (MDF) was reduced from 800 ppm to 17 ppm with 97.8% of total sulfur after 1 h.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Yinke Zhang ◽  
Hang Xu ◽  
Mengfan Jia ◽  
Zhuang Liu ◽  
Deqiang Qu

Response surface methodology (RSM) was selected to optimize a desulfurization process with metal based ionic liquids ([Bmim]Cl/CoCl2) and potassium monopersulfate (PMS) together to remove benzothiophene (BT) from octane (simulating oil). The four experimental conditions of PMS dosage, [Bmim]Cl/CoCl2 dosage, temperature, and reaction time were investigated. The results showed that the quadratic relationship was built up between BT removal and four experimental variables with 0.9898 fitting coefficient. The optimal conditions were 1.6 g (20 wt%) PMS solution, 3.2 g [Bmim]Cl/CoCl2, 46°C, and 23 min, which were obtained based on RSM and experimental results. Under the optimal condition, predicted sulfur removal rate and experimental sulfur removal rate were 96.7% and 95.4%, respectively. The sequence of four experimental conditions on desulfurization followed the order temperature > time > [Bmim]Cl/CoCl2 dosage > PMS solution dosage.


Sign in / Sign up

Export Citation Format

Share Document