scholarly journals Cosmological Probes of Supersymmetric Field Theory Models at Superhigh Energy Scales

Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 511 ◽  
Author(s):  
Sergei Ketov ◽  
Maxim Khlopov

The lack of positive results in searches for supersymmetric (SUSY) particles at the Large Hadron Collider (LHC) and in direct searches for Weakly Interacting Massive Particles (WIMPs) in the underground experiments may hint to a super-high energy scale of SUSY phenomena beyond the reach of direct experimental probes. At such scales the supergravity models based on Starobinsky inflation can provide the mechanisms for both inflation and superheavy dark matter. However, it makes the indirect methods the only way of testing the SUSY models, so that cosmological probes acquire the special role in this context. Such probes can rely on the nontrivial effects of SUSY physics in the early Universe, which are all model-dependent and thus can provide discrimination of the models and their parameters. The nonstandard cosmological features like Primordial Black Holes (PBHs) or antimatter domains in a baryon-asymmetric universe are discussed as possible probes for high energy scale SUSY physics.

2015 ◽  
Vol 30 (21) ◽  
pp. 1550106 ◽  
Author(s):  
Tatsuo Kobayashi ◽  
Osamu Seto

Recent detection of B-mode polarization induced from tensor perturbations by the BICEP2 experiment implies the so-called large field inflation, where an inflaton field takes super-Planckian expectation value during inflation, at a high energy scale. We show however, if another inflation follows hybrid inflation, the hybrid inflation can generate a large tensor perturbation with not super-Planckian but Planckian field value. This scenario would relax the tension between BICEP2 and Planck concerning the tensor-to-scalar ratio, because a negative large running can also be obtained for a certain number of e-fold of the hybrid inflation. A natural interpretation of a large gravitational wave mode with or without the scalar spectral running might be multiple inflation in the early Universe.


1975 ◽  
Vol 56 (5) ◽  
pp. 465-469 ◽  
Author(s):  
D. Amati ◽  
R. Jengo

2008 ◽  
Vol 77 (1) ◽  
Author(s):  
Ting-Pong Choy ◽  
Robert G. Leigh ◽  
Philip Phillips ◽  
Philip D. Powell

2001 ◽  
Vol 16 (36) ◽  
pp. 2327-2333
Author(s):  
TIANJUN LI

We conjecture that the extra dimensions are physical noncompact at high energy scale or high temperature; after the symmetry breaking or cosmological phase transition, the bulk cosmological constant may become negative, and then, the extra dimensions may become physical compact at low energy scale. We show this in a five-dimensional toy brane model with three parallel three-branes and a real bulk scalar whose potential is temperature-dependent. We also point out that after the global or gauge symmetry breaking, or the supersymmetry breaking in supergravity theory, the spontaneous physical compactification of the extra dimensions might be realized.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
S. H. Hendi ◽  
B. Eslam Panah ◽  
S. Panahiyan ◽  
M. Momennia

Motivated by UV completion of general relativity with a modification of a geometry at high energy scale, it is expected to have an energy dependent geometry. In this paper, we introduce charged black hole solutions with power Maxwell invariant source in the context of gravity’s rainbow. In addition, we investigate two classes ofF(R)gravity’s rainbow solutions. At first, we study energy dependentF(R)gravity without energy-momentum tensor, and then we obtainF(R)gravity’s rainbow in the presence of conformally invariant Maxwell source. We study geometrical properties of the mentioned solutions and compare their results. We also give some related comments regarding thermodynamical behavior of the obtained solutions and discuss thermal stability of the solutions.


Physics Today ◽  
1972 ◽  
Vol 25 (4) ◽  
pp. 23-28 ◽  
Author(s):  
T. D. Lee

1985 ◽  
Vol 87 (4) ◽  
pp. 373-396 ◽  
Author(s):  
M. V. Chizhov ◽  
A. D. Donkov ◽  
R. M. Ibadov ◽  
V. G. Kadyshevsky ◽  
M. D. Mateev

1960 ◽  
Vol 120 (5) ◽  
pp. 1740-1744 ◽  
Author(s):  
S. E. Hunt ◽  
R. A. Pope ◽  
D. V. Freck ◽  
W. W. Evans

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1266
Author(s):  
José Manuel Carmona ◽  
José Luis Cortés ◽  
José Javier Relancio

Relativistic deformed kinematics are usually considered a way to capture the residual effects of a fundamental quantum gravity theory. These kinematics present a non-commutative addition law for the momenta so that the total momentum of a multi-particle system depends on the specific ordering in which the momenta are composed. We explore in the present work how this property may be used to generate an asymmetry between particles and antiparticles through a particular ordering prescription, resulting in a violation of CPT symmetry. We study its consequences for muon decay, obtaining a difference in the lifetimes of the particle and the antiparticle as a function of the new high-energy scale, parameterizing such relativistic deformed kinematics.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Alexandre Alves ◽  
A.G. Dias ◽  
D.D. Lopes

Abstract In this work, prospects to probe an overlooked facet of axion-like particles (ALPs) — their potential couplings to sterile neutrinos — are presented. We found that mono-photon searches have the potential to constrain ALP couplings to sterile neutrinos when a new heavy scalar boosts the ALP decay yields. Working within an effective field theory (EFT) approach, we scan the parameters space to establish the reach of the 13 TeV LHC to probe such couplings. We found regions of the parameters space evading several experimental constraints that can be probed at the LHC. Moreover, a complementary role between the LHC and various experiments that search for axions and ALPs can be anticipated for models where ALPs interact with sterile neutrinos. We also present the UV realization of a model having an axion-like particle, a heavy scalar and sterile neutrinos whose parameters are spanned by our EFT approach. The proposed model contains a type of seesaw mechanism for generating masses for the active neutrinos along with sterile neutrinos involving the high energy scale of the spontaneous breaking of the global symmetry associated to the ALP. Some benchmark points of this model can be discovered at the 13 TeV LHC with 300 fb−1.


Sign in / Sign up

Export Citation Format

Share Document